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1
SYSTEMS AND METHODS FOR REPLACING
SIGNAL ARTIFACTS IN A GLUCOSE
SENSOR DATA STREAM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 10/648,849 filed Aug. 22, 2003, which is incorporated
by reference herein in its entirety, and is hereby made a part
of this specification.

FIELD OF THE INVENTION

The present invention relates generally to systems and
methods for processing data received from a glucose sensor.
Particularly, the present invention relates to systems and
methods for detecting and replacing transient non-glucose
related signal artifacts, including detecting, estimating, pre-
dicting and otherwise minimizing the effects of signal arti-
facts in a glucose sensor data stream.

BACKGROUND OF THE INVENTION

Diabetes mellitus is a disorder in which the pancreas
cannot create sufficient insulin (Type I or insulin dependent)
and/or in which insulin is not effective (Type 2 or non-
insulin dependent). In the diabetic state, the victim suffers
from high blood sugar, which causes an array of physiologi-
cal derangements (kidney failure, skin ulcers, or bleeding
into the vitreous of the eye) associated with the deterioration
of small blood vessels. A hypoglycemic reaction (low blood
sugar) is induced by an inadvertent overdose of insulin, or
after a normal dose of insulin or glucose-lowering agent
accompanied by extraordinary exercise or insufficient food
intake.

Conventionally, a diabetic person carries a self-monitor-
ing blood glucose (SMBG) monitor, which typically com-
prises uncomfortable finger pricking methods. Due to the
lack of comfort and convenience, a diabetic will normally
only measure his or her glucose level two to four times per
day. Unfortunately, these time intervals are so far spread
apart that the diabetic will likely find out too late, sometimes
incurring dangerous side effects, of a hyperglycemic or
hypoglycemic condition. In fact, it is not only unlikely that
a diabetic will take a timely SMBG value, but additionally
the diabetic will not know if their blood glucose value is
going up (higher) or down (lower) based on conventional
methods.

Consequently, a variety of transdermal and implantable
electrochemical sensors are being developed for continuous
detecting and/or quantifying blood glucose values. Many
implantable glucose sensors suffer from complications
within the body and provide only short-term and less-than-
accurate sensing of blood glucose. Similarly, transdermal
sensors have run into problems in accurately sensing and
reporting back glucose values continuously over extended
periods of time. Some efforts have been made to obtain
blood glucose data from implantable devices and retrospec-
tively determine blood glucose trends for analysis, however
these efforts do not aid the diabetic in determining real-time
blood glucose information. Some efforts have also been
made to obtain blood glucose data from transdermal devices
for prospective data analysis, however similar problems
have occurred.

Data streams from glucose sensors are known to have
some amount of noise, caused by unwanted electronic
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and/or diffusion-related system noise that degrades the qual-
ity of the data stream. Some attempts have been made in
conventional glucose sensors to smooth the raw output data
stream representative of the concentration of blood glucose
in the sample, for example by smoothing or filtering of
Gaussian, white, random, and/or other relatively low ampli-
tude noise in order to improve the signal to noise ratio, and
thus data output.

SUMMARY OF THE INVENTION

Systems and methods are provided that accurately detect
and replace signal noise that is caused by substantially
non-glucose reaction rate-limiting phenomena, such as isch-
emia, pH changes, temperature changes, pressure, and
stress, for example, which are referred to herein as signal
artifacts. Detecting and replacing signal artifacts in a raw
glucose data can provide accurate estimated glucose mea-
surements to a diabetic patient so that they can proactively
care for their condition to safely avoid hyperglycemic and
hypoglycemic conditions.

In a first embodiment a method is provided for analyzing
data from a glucose sensor, including: monitoring a data
stream from the sensor; detecting transient non-glucose
related signal artifacts in the data stream that have a higher
amplitude than a system noise; and replacing at least some
of the signal artifacts using estimated glucose signal values.

In an aspect of the first embodiment, the data signal
obtaining step includes receiving data from one of non-
invasive, minimally invasive, and invasive glucose sensor.

In an aspect of the first embodiment, the data signal
obtaining step includes receiving data from one of an
enzymatic, chemical, physical, electrochemical, spectropho-
tometric, polarimetric, calorimetric, iontophoretic, and
radiometric glucose sensor.

In an aspect of the first embodiment, the data signal
obtaining step includes receiving data from a wholly
implantable glucose sensor.

In an aspect of the first embodiment, the signal artifacts
detection step includes testing for ischemia within or proxi-
mal to the glucose sensor.

In an aspect of the first embodiment, the ischemia testing
step includes obtaining oxygen concentration using an oxy-
gen sensor proximal to or within the glucose sensor.

In an aspect of the first embodiment, the ischemia testing
step includes comparing a measurement from an oxygen
sensor proximal to or within the glucose sensor with a
measurement from an oxygen sensor distal from the glucose
sensor.

In an aspect of the first embodiment, the glucose sensor
includes an electrochemical cell including a working elec-
trode and a reference electrode, and wherein the ischemia-
testing step includes pulsed amperometric detection.

In an aspect of the first embodiment, the glucose sensor
includes an electrochemical cell including working, counter
and reference electrodes, and wherein the ischemia-testing
step includes monitoring the counter electrode.

In an aspect of the first embodiment, the glucose sensor
includes an electrochemical cell including working, counter
and reference electrodes, and wherein the ischemia-testing
step includes monitoring the reference electrode.

In an aspect of the first embodiment, the glucose sensor
includes an electrochemical cell including an anode and a
cathode, and wherein the ischemia-testing step includes
monitoring the cathode.
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In an aspect of the first embodiment, the signal artifacts
detection step includes monitoring a level of pH proximal to
the sensor.

In an aspect of the first embodiment, the signal artifacts
detection step includes monitoring a temperature proximal
to the sensor.

In an aspect of the first embodiment, the signal artifacts
detection step includes comparing a level of pH proximal to
and distal to the sensor.

In an aspect of the first embodiment, the signal artifacts
detection step includes comparing a temperature proximal to
and distal to the sensor.

In an aspect of the first embodiment, the signal artifacts
detection step includes monitoring a pressure or stress
within the glucose sensor.

In an aspect of the first embodiment, the signal artifacts
detection step includes evaluating historical data for high
amplitude noise above a predetermined threshold.

In an aspect of the first embodiment, the signal artifacts
detection step includes a Cone of Possibility Detection
Method.

In an aspect of the first embodiment, the signal artifacts
detection step includes evaluating the data stream for a
non-physiological rate-of-change.

In an aspect of the first embodiment, the signal artifacts
detection step includes monitoring the frequency content of
the signal.

In an aspect of the first embodiment, the frequency-
content monitoring step includes performing an orthogonal
basis function-based transform.

In an aspect of the first embodiment, the transform is a
Fourier Transform or a wavelet transform.

In an aspect of the first embodiment, the artifacts replace-
ment step includes performing linear or non-linear regres-
sion.

In an aspect of the first embodiment, the artifacts replace-
ment step includes performing a trimmed mean.

In an aspect of the first embodiment, the artifacts replace-
ment step includes filtering using a non-recursive filter.

In an aspect of the first embodiment, the non-recursive
filtering step uses a finite impulse response filter.

In an aspect of the first embodiment, the artifacts replace-
ment step includes filtering using a recursive filter.

In an aspect of the first embodiment, the recursive filtering
step uses an infinite impulse response filter.

In an aspect of the first embodiment, the artifacts replace-
ment step includes a performing a maximum average algo-
rithm.

In an aspect of the first embodiment, the artifacts replace-
ment step includes performing a Cone of Possibility
Replacement Method.

In an aspect of the first embodiment, the method further
includes estimating future glucose signal values based on
historical glucose values.

In an aspect of the first embodiment, the glucose future
estimation step includes algorithmically estimating the
future signal value based using at least one of linear regres-
sion, non-linear regression, and an auto-regressive algo-
rithm.

In an aspect of the first embodiment, the glucose future
estimation step further includes measuring at least one of
rate-of-change, acceleration, and physiologically feasibility
of one or more signal values and subsequently selectively
applying the algorithm conditional on a range of one of the
measurements.

In an aspect of the first embodiment, the glucose sensor
includes an electrochemical cell including working, counter,
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and reference electrodes, and wherein the artifacts replace-
ment step includes normalizing the data signal based on
baseline drift at the reference electrode.

In an aspect of the first embodiment, the signal artifacts
replacement step is substantially continual.

In an aspect of the first embodiment, the signal artifacts
replacement step is initiated in response to positive detection
of signal artifacts.

In an aspect of the first embodiment, the signal artifacts
replacement step is terminated in response to detection of
negligible signal artifacts.

In an aspect of the first embodiment, the signal artifacts
detection step includes evaluating the severity of the signal
artifacts.

In an aspect of the first embodiment, the severity evalu-
ation is based on an amplitude of the transient non-glucose
related signal artifacts.

In an aspect of the first embodiment, the severity evalu-
ation is based on a duration of the transient non-glucose
related signal artifacts.

In an aspect of the first embodiment, the severity evalu-
ation is based on a rate-of-change of the transient non-
glucose related signal artifacts.

In an aspect of the first embodiment, the severity evalu-
ation is based on a frequency content of the transient
non-glucose related signal artifacts.

In an aspect of the first embodiment, the artifacts replace-
ment step includes selectively applying one of a plurality of
signal estimation algorithm factors in response to the sever-
ity of the signal artifacts.

In an aspect of the first embodiment, the plurality of signal
estimation algorithm factors includes a single algorithm with
a plurality of parameters that are selectively applied to the
algorithm.

In an aspect of the first embodiment, the plurality of signal
estimation algorithm factors includes a plurality of distinct
algorithms.

In an aspect of the first embodiment, the step of selec-
tively applying one of a plurality of signal estimation
algorithm factors includes selectively applying a predeter-
mined algorithm that includes a set of parameters whose
values depend on the severity of the signal artifacts.

In an aspect of the first embodiment, the method further
includes discarding at least some of the signal artifacts.

In an aspect of the first embodiment, the method further
includes projecting glucose signal values for a time during
which no data is available.

In a second embodiment, a method is provided for pro-
cessing data signals obtained from a glucose sensor includ-
ing: obtaining a data stream from a glucose sensor; detecting
transient non-glucose related signal artifacts in the data
stream that have a higher amplitude than a system noise; and
selectively applying one of a plurality of signal estimation
algorithm factors to replace non-glucose related signal arti-
facts.

In an aspect of the second embodiment, the data signal
obtaining step includes receiving data from one of non-
invasive, minimally invasive, and invasive glucose sensor.

In an aspect of the second embodiment, the data signal
obtaining step includes receiving data from one of an
enzymatic, chemical, physical, electrochemical, spectropho-
tometric, polarimetric, calorimetric, iontophoretic, and
radiometric glucose sensor.

In an aspect of the second embodiment, the data signal
obtaining step includes receiving data from a wholly
implantable glucose sensor.
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In an aspect of the second embodiment, the signal artifacts
detection step includes testing for ischemia within or proxi-
mal to the glucose sensor.

In an aspect of the second embodiment, the ischemia
testing step includes obtaining oxygen concentration using
an oxygen sensor proximal to or within the glucose sensor.

In an aspect of the second embodiment, the ischemia
testing step includes comparing a measurement from an
oxygen sensor proximal to or within the glucose sensor with
a measurement from an oxygen sensor distal from the
glucose sensor.

In an aspect of the second embodiment, the glucose sensor
includes an electrochemical cell including a working elec-
trode and a reference electrode, and wherein the ischemia-
testing step includes pulsed amperometric detection.

In an aspect of the second embodiment, the glucose sensor
includes an electrochemical cell including working, counter
and reference electrodes, and wherein the ischemia-testing
step includes monitoring the counter electrode.

In an aspect of the second embodiment, the glucose sensor
includes an electrochemical cell including working, counter
and reference electrodes, and wherein the ischemia testing
step includes monitoring the reference electrode.

In an aspect of the second embodiment, the glucose sensor
includes an electrochemical cell including an anode and a
cathode, and wherein the ischemia-testing step includes
monitoring the cathode.

In an aspect of the second embodiment, the signal artifacts
detection step includes monitoring a level of pH proximal to
the sensor.

In an aspect of the second embodiment, the signal artifacts
detection step includes monitoring a temperature proximal
to the sensor.

In an aspect of the second embodiment, the signal artifacts
detection step includes comparing a level of pH proximal to
and distal to the sensor.

In an aspect of the second embodiment, the signal artifacts
detection step includes comparing a temperature proximal to
and distal to the sensor.

In an aspect of the second embodiment, the signal artifacts
detection step includes monitoring the pressure or stress
within the glucose sensor.

In an aspect of the second embodiment, the signal artifacts
detection step includes evaluating historical data for high
amplitude noise above a predetermined threshold.

In an aspect of the second embodiment, the signal artifacts
detection step includes a Cone of Possibility Detection
Method.

In an aspect of the second embodiment, the signal artifacts
detection step includes evaluating the signal for a non-
physiological rate-of-change.

In an aspect of the second embodiment, the signal artifacts
detection step includes monitoring the frequency content of
the signal.

In an aspect of the second embodiment, the frequency-
content monitoring step includes performing an orthogonal
basis function-based transform.

In an aspect of the second embodiment, the transform is
a Fourier Transform or a wavelet transform.

In an aspect of the second embodiment, the artifacts
replacement step includes performing linear or non-linear
regression.

In an aspect of the second embodiment, the artifacts
replacement step includes performing a trimmed mean.

In an aspect of the second embodiment, the artifacts
replacement step includes filtering using a non-recursive
filter.

10

15

20

25

30

35

40

45

50

55

60

65

6

In an aspect of the second embodiment, the non-recursive
filtering step uses a finite impulse response filter.

In an aspect of the second embodiment, the artifacts
replacement step includes filtering using a recursive filter.

In an aspect of the second embodiment, the recursive
filtering step uses an infinite impulse response filter.

In an aspect of the second embodiment, the artifacts
replacement step includes a performing a maximum average
algorithm.

In an aspect of the second embodiment, the artifacts
replacement step includes performing a Cone of Possibility
algorithm.

In an aspect of the second embodiment, the method
further includes estimating future glucose signal values
based on historical glucose values.

In an aspect of the second embodiment, the glucose future
estimation step includes algorithmically estimating the
future signal value based using at least one of linear regres-
sion, non-linear regression, and an auto-regressive algo-
rithm.

In an aspect of the second embodiment, the glucose future
estimation step further includes measuring at least one of
rate-of-change, acceleration, and physiologically feasibility
of one or more signal values and subsequently selectively
applying the algorithm conditional on a range of one of the
measurements.

In an aspect of the second embodiment, the glucose sensor
includes an electrochemical cell including working, counter,
and reference electrodes, and wherein the artifacts replace-
ment step includes normalizing the data signal based on
baseline drift at the reference electrode.

In an aspect of the second embodiment, the selective
application step is substantially continual.

In an aspect of the second embodiment, the selective
application step is initiated in response to positive detection
of signal artifacts.

In an aspect of the second embodiment, the selective
application step is terminated in response to detection of
negligible signal artifacts.

In an aspect of the second embodiment, the signal artifacts
detection step includes evaluating the severity of the signal
artifacts.

In an aspect of the second embodiment, the severity
evaluation is based on an amplitude of the transient non-
glucose related signal artifacts.

In an aspect of the second embodiment, the severity
evaluation is based on a duration of the transient non-
glucose related signal artifacts.

In an aspect of the second embodiment, the severity
evaluation is based on a rate-of-change of the transient
non-glucose related signal artifacts.

In an aspect of the second embodiment, the severity
evaluation is based on a frequency content of the transient
non-glucose related signal artifacts.

In an aspect of the second embodiment, the selective
application step applies the one of a plurality of signal
estimation algorithm factors in response to the severity of
the signal artifacts.

In an aspect of the second embodiment, the plurality of
signal estimation algorithm factors includes a single algo-
rithm with a plurality of parameters that are selectively
applied to the algorithm.

In an aspect of the second embodiment, the plurality of
signal estimation algorithm factors includes a plurality of
distinct algorithms.

In an aspect of the second embodiment, the selective
application step includes selectively applying a predeter-
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mined algorithm that includes a set of parameters whose
values depend on the severity of the signal artifacts.

In an aspect of the second embodiment, the method
further includes discarding at least some of the signal
artifacts.

In an aspect of the second embodiment, the selective
application step further includes projecting glucose signal
values for a time during which no data is available.

In a third embodiment, a system is provided for process-
ing data signals obtained from a glucose sensor, including:
a signal processing module including programming to moni-
tor a data stream from the sensor over a period of time; a
detection module including programming to detect transient
non-glucose related signal artifacts in the data stream that
have a higher amplitude than a system noise; and a signal
estimation module including programming to replace at least
some of the signal artifacts with estimated glucose signal
values.

In an aspect of the third embodiment, the signal process-
ing module is adapted to receive data from one of non-
invasive, minimally invasive, and invasive glucose sensor.

In an aspect of the third embodiment, the signal process-
ing module is adapted to receive data from one of an
enzymatic, chemical, physical, electrochemical, spectropho-
tometric, polarimetric, calorimetric, iontophoretic, and
radiometric glucose sensor.

In an aspect of the third embodiment, the signal process-
ing module is adapted to receive data from a wholly implant-
able glucose sensor.

In an aspect of the third embodiment, the detection
module includes programming to for ischemia detection.

In an aspect of the third embodiment, the detection
module includes programming to detect ischemia from a
first oxygen sensor located proximal to or within the glucose
sensor.

In an aspect of the third embodiment, the detection
module further includes programming to compare a mea-
surement from a first oxygen sensor located proximal to or
within the glucose sensor with a measurement from a second
oxygen sensor located distal to the glucose sensor for
ischemia detection.

In an aspect of the third embodiment, the detection
module further includes programming to detect ischemia
using pulsed amperometric detection of an electrochemical
cell including a working electrode and a reference electrode.

In an aspect of the third embodiment, the detection
module further includes programming to detect ischemia by
monitoring a counter electrode of an electrochemical cell
that includes working, counter and reference electrodes.

In an aspect of the third embodiment, the detection
module further includes programming to detect ischemia by
monitoring a reference electrode of an electrochemical cell
that includes working, counter and reference electrodes.

In an aspect of the third embodiment, the detection
module further includes programming to detect ischemia by
monitoring a cathode of an electrochemical cell.

In an aspect of the third embodiment, the detection
module monitors a level of pH proximal to the glucose
sensor.

In an aspect of the third embodiment, the detection
module monitors a temperature proximal to the glucose
sensor.

In an aspect of the third embodiment, the detection
module compares a level of pH proximal to and distal to the
sensor.
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In an aspect of the third embodiment, the detection
module compares a temperature proximal to and distal to the
glucose sensor.

In an aspect of the third embodiment, the detection
module monitors a pressure or stress within the glucose
sensor.

In an aspect of the third embodiment, the detection
module evaluates historical data for high amplitude noise
above a predetermined threshold.

In an aspect of the third embodiment, the detection
module includes programming to perform a Cone of Possi-
bility to detect signal artifacts.

In an aspect of the third embodiment, the detection
module evaluates the data stream for a non-physiological
rate-of-change.

In an aspect of the third embodiment, the detection
module monitors the frequency content of the signal.

In an aspect of the third embodiment, the detection
module monitors the frequency content including perform-
ing an orthogonal basis function-based transform.

In an aspect of the third embodiment, the orthogonal basis
function-based transform includes a Fourier Transform or a
wavelet transform.

In an aspect of the third embodiment, the signal estima-
tion module estimates glucose signal values using linear or
non-linear regression.

In an aspect of the third embodiment, the signal estima-
tion module estimates glucose signal values using a trimmed
mean.

In an aspect of the third embodiment, the signal estima-
tion module estimates glucose signal values using a non-
recursive filter.

In an aspect of the third embodiment, the non-recursive
filter is a finite impulse response filter.

In an aspect of the third embodiment, the signal estima-
tion module estimates glucose signal values using a recur-
sive filter.

In an aspect of the third embodiment, the recursive filter
is an infinite impulse response filter.

In an aspect of the third embodiment, the signal estima-
tion module estimates glucose signal values using a maxi-
mum average algorithm.

In an aspect of the third embodiment, the signal estima-
tion module estimates glucose signal values using a Cone of
Possibility Replacement Method.

In an aspect of the third embodiment, the signal estima-
tion module further includes programming to estimate future
glucose signal values based on historical glucose values.

In an aspect of the third embodiment, the future glucose
signal value programming includes algorithmically estimat-
ing the future signal value based using at least one of linear
regression, non-linear regression, and an auto-regressive
algorithm.

In an aspect of the third embodiment, the signal estima-
tion module further includes programming to measure at
least one of rate-of-change, acceleration, and physiologi-
cally feasibility of one or more signal values, and wherein
the signal estimation module further includes programming
to selectively apply an algorithm responsive to value of one
of the measurements from the detection module.

In an aspect of the third embodiment, signal estimation
module includes programming to normalize the data stream
based on baseline drift at a reference electrode of a glucose
sensor that includes an electrochemical cell including work-
ing, counter, and reference electrodes.
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In an aspect of the third embodiment, the signal estima-
tion module continually replaces the data stream with esti-
mated signal values.

In an aspect of the third embodiment, the signal estima-
tion module initiates signal replacement of the data stream
in response to positive detection of signal artifacts.

In an aspect of the third embodiment, the signal estima-
tion module terminates signal replacement in response to
detection of negligible signal artifacts.

In an aspect of the third embodiment, the detection
module evaluates the severity of the signal artifacts.

In an aspect of the third embodiment, the detection
module evaluates the severity of the signal artifacts based on
an amplitude of the transient non-glucose related signal
artifacts.

In an aspect of the third embodiment, the detection
module evaluates the severity of the signal artifacts based on
a duration of the transient non-glucose related signal arti-
facts.

In an aspect of the third embodiment, the detection
module evaluates the severity of the signal artifacts based on
a rate-of-change of the transient non-glucose related signal
artifacts.

In an aspect of the third embodiment, the detection
module evaluates the severity of the signal artifacts based on
a frequency content of the transient non-glucose related
signal artifacts.

In an aspect of the third embodiment, the signal estima-
tion module includes programming to selectively apply one
of a plurality of signal estimation algorithm factors in
response to the severity of the signal artifacts.

In an aspect of the third embodiment, the plurality of
signal estimation algorithm factors includes a single algo-
rithm with a plurality of parameters that are selectively
applied to the algorithm.

In an aspect of the third embodiment, the plurality of
signal estimation algorithm factors includes a plurality of
distinct algorithms.

In an aspect of the third embodiment, the signal estima-
tion module selectively applies a set of parameters whose
values depend on the severity of the signal artifacts to one
of a predetermined algorithm.

In an aspect of the third embodiment, the detection
module includes programming to discard at least some of the
signal artifacts.

In an aspect of the third embodiment, the signal estima-
tion module includes programming to project glucose signal
values for a time during which no data is available.

In a fourth embodiment, a system is provided for pro-
cessing data signals obtained from a glucose sensor, the
system including: a signal processing module including
programming to monitor a data stream from the sensor over
a period of time; a detection module including programming
to detect transient non-glucose related signal artifacts in the
wherein the plurality of signal estimation algorithm factors
include a plurality of distinct algorithms data streams that
have a higher amplitude than a system noise; and a signal
estimation module including programming to selectively
apply one of a plurality of signal estimation algorithm
factors to replace non-glucose related signal artifacts.

In an aspect of the fourth embodiment, the signal pro-
cessing module is adapted to receive data from one of
non-invasive, minimally invasive, and invasive glucose sen-
sor.

In an aspect of the fourth embodiment, the signal pro-
cessing module is adapted to receive data from one of an
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enzymatic, chemical, physical, electrochemical, spectropho-
tometric, polarimetric, calorimetric, iontophoretic, and
radiometric glucose sensor.

In an aspect of the fourth embodiment, the signal pro-
cessing module is adapted to receive data from a wholly
implantable glucose sensor.

In an aspect of the fourth embodiment, the detection
module includes programming to detect ischemia within or
proximal to the glucose sensor.

In an aspect of the fourth embodiment, the detection
module includes programming to obtain oxygen concentra-
tion using an oxygen sensor proximal to or within the
glucose sensor.

In an aspect of the fourth embodiment, the detection
module includes programming to compare a measurement
from an oxygen sensor proximal to or within the glucose
sensor with a measurement from an oxygen sensor distal
from the glucose sensor.

In an aspect of the fourth embodiment, the detection
module includes programming to detect ischemia using
pulsed amperometric detection of an electrochemical cell
that includes a working electrode and a reference electrode.

In an aspect of the fourth embodiment, the detection
module includes programming to monitor a counter elec-
trode of a glucose sensor that includes an electrochemical
cell including working, counter and reference electrodes.

In an aspect of the fourth embodiment, the detection
module includes programming to monitor a reference elec-
trode of a glucose sensor that includes an electrochemical
cell including working, counter and reference electrodes.

In an aspect of the fourth embodiment, the detection
module includes programming to monitor a cathode of a
glucose sensor that includes an electrochemical cell includ-
ing an anode and a cathode.

In an aspect of the fourth embodiment, the detection
module includes programming to monitor a level of pH
proximal to the glucose sensor.

In an aspect of the fourth embodiment, the detection
module includes programming to monitor a temperature
proximal to the glucose sensor.

In an aspect of the fourth embodiment, the detection
module includes programming to compare a level of pH
proximal to and distal to the glucose sensor.

In an aspect of the fourth embodiment, the detection
module includes programming to compare a temperature
proximal to and distal to the sensor.

In an aspect of the fourth embodiment, the detection
module includes programming to monitor a pressure or
stress within the glucose sensor.

In an aspect of the fourth embodiment, the detection
module includes programming to evaluate historical data for
high amplitude noise above a predetermined threshold.

In an aspect of the fourth embodiment, the detection
module includes programming to perform Cone of Possi-
bility Detection.

In an aspect of the fourth embodiment, the detection
module includes programming to evaluate the signal for a
non-physiological rate-of-change.

In an aspect of the fourth embodiment, the detection
module includes programming to monitor the frequency
content of the signal.

In an aspect of the fourth embodiment, the detection
module performs an orthogonal basis function-based trans-
form to monitor frequency content.

In an aspect of the fourth embodiment, the transform is a
Fourier Transform or a wavelet transform.
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In an aspect of the fourth embodiment, the signal estima-
tion module estimates glucose signal values using linear or
non-linear regression.

In an aspect of the fourth embodiment, the signal estima-
tion module estimates glucose signal values using a trimmed
mean.

In an aspect of the fourth embodiment, the signal estima-
tion module estimates glucose signal values using a non-
recursive filter.

In an aspect of the fourth embodiment, the non-recursive
filter is a finite impulse response filter.

In an aspect of the fourth embodiment, the signal estima-
tion module estimates glucose signal values using a recur-
sive filter.

In an aspect of the fourth embodiment, the recursive filter
is an infinite impulse response filter.

In an aspect of the fourth embodiment, the signal estima-
tion module estimates glucose signal values using a maxi-
mum average algorithm.

In an aspect of the fourth embodiment, the signal estima-
tion module estimates glucose signal values using Cone of
Possibility Replacement Method algorithm.

In an aspect of the fourth embodiment, the signal estima-
tion module further includes programming to estimate future
glucose signal values based on historical glucose values.

In an aspect of the fourth embodiment, future glucose
signal value programming includes algorithmically estimat-
ing the future signal value based using at least one of linear
regression, non-linear regression, and an auto-regressive
algorithm.

In an aspect of the fourth embodiment, the signal estima-
tion module further includes programming to measure at
least one of rate-of-change, acceleration, and physiologi-
cally feasibility of one or more signal values, and wherein
the signal estimation module further includes programming
to selectively apply an algorithm responsive to value of one
of the measurements from the detection module.

In an aspect of the fourth embodiment, the signal estima-
tion module includes programming to normalize the data
stream based on baseline drift at a reference electrode of a
glucose sensor that includes an electrochemical cell includ-
ing working, counter, and reference electrodes.

In an aspect of the fourth embodiment, the signal estima-
tion module continually replaces the data stream with esti-
mated signal values.

In an aspect of the fourth embodiment, the signal estima-
tion module initiates signal replacement of the data stream
in response to positive detection of signal artifacts.

In an aspect of the fourth embodiment, the signal estima-
tion module terminates signal replacement in response to
detection of negligible signal artifacts.

In an aspect of the fourth embodiment, the detection
module evaluates the severity of the signal artifacts.

In an aspect of the fourth embodiment, the detection
module evaluates the severity of the signal artifacts based on
an amplitude of the transient non-glucose related signal
artifacts.

In an aspect of the fourth embodiment, the detection
module evaluates the severity of the signal artifacts based on
a duration of the transient non-glucose related signal arti-
facts.

In an aspect of the fourth embodiment, the detection
module evaluates the severity of the signal artifacts based on
a rate-of-change of the transient non-glucose related signal
artifacts.

10

15

20

25

30

40

45

55

12

In an aspect of the fourth embodiment, the detection
module evaluates the severity of the signal artifacts based on
a frequency content of the transient non-glucose related
signal artifacts.

In an aspect of the fourth embodiment, the signal estima-
tion module includes programming to selectively apply one
of a plurality of signal estimation algorithm factors in
response to the severity of the signal artifacts.

In an aspect of the fourth embodiment, the plurality of
signal estimation algorithm factors includes a single algo-
rithm with a plurality of parameters that are selectively
applied to the algorithm.

In an aspect of the fourth embodiment, the plurality of
signal estimation algorithm factors includes a plurality of
distinct algorithms.

In an aspect of the fourth embodiment, the signal estima-
tion module selectively applies a set of parameters whose
values depend on the severity of the signal artifacts to one
of a predetermined algorithm.

In an aspect of the fourth embodiment, the detection
module includes programming to discard at least some of the
signal artifacts.

In an aspect of the fourth embodiment, the signal estima-
tion module includes programming to project glucose signal
values for a time during which no data is available.

In a fifth embodiment, an implantable glucose monitoring
device is provided including: a glucose sensor; and a pro-
cessor operatively linked to the sensor designed to receive a
data stream from the sensor; wherein the processor is
programmed to analyze the data stream and to detect tran-
sient non-glucose related signal artifacts in the data stream
that have a higher amplitude than system noise, and to
replace at least some of the signal artifacts with estimated
values.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an exploded perspective view of a glucose
sensor in one embodiment.

FIG. 2 is a block diagram that illustrates sensor electron-
ics in one embodiment.

FIGS. 3A to 3D are schematic views of a receiver in first,
second, third, and fourth embodiments, respectively.

FIG. 4 is a block diagram of receiver electronics in one
embodiment.

FIG. 5 is a flow chart that illustrates the process of
calibrating the sensor data in one embodiment.

FIG. 6 is a graph that illustrates a linear regression used
to calibrate the sensor data in one embodiment.

FIG. 7A is a graph that shows a raw data stream obtained
from a glucose sensor over a 4 hour time span in one
example.

FIG. 7B is a graph that shows a raw data stream obtained
from a glucose sensor over a 36 hour time span in another
example.

FIG. 8 is a flow chart that illustrates the process of
detecting and replacing transient non-glucose related signal
artifacts in a data stream in one embodiment.

FIG. 9 is a graph that illustrates the correlation between
the counter electrode voltage and signal artifacts in a data
stream from a glucose sensor in one embodiment.

FIG. 10A is a circuit diagram of a potentiostat that
controls a typical three-electrode system in one embodi-
ment.

FIG. 10B is a diagram known as Cyclic-Voltammetry
(CV) curve, which illustrates the relationship between
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applied potential (V) and signal strength of the working
electrode (I .ysz) and can be used to detect signal artifacts.

FIG. 10C is a diagram showing a CV curve that illustrates
an alternative embodiment of signal artifacts detection,
wherein pH and/or temperature can be monitoring using the
CV curve.

FIG. 11 is a graph and spectrogram that illustrate the
correlation between high frequency and signal artifacts
observed by monitoring the frequency content of a data
stream in one embodiment.

FIG. 12 is a graph that illustrates a data stream obtained
from a glucose sensor and a signal smoothed by trimmed
linear regression that can be used to replace some of or the
entire raw data stream in one embodiment.

FIG. 13 is a graph that illustrates a data stream obtained
from a glucose sensor and a FIR-smoothed data signal that
can be used to replace some of or the entire raw data stream
in one embodiment.

FIG. 14 is a graph that illustrates a data stream obtained
from a glucose sensor and an [IR-smoothed data signal that
can be used to replace some of or the entire raw data stream
in one embodiment.

FIG. 15 is a flowchart that illustrates the process of
selectively applying signal estimation based on the severity
of signal artifacts on a data stream.

FIG. 16 is a graph that illustrates selectively applying a
signal estimation algorithm responsive to positive detection
of signal artifacts on the raw data stream.

FIG. 17 is a graph that illustrates selectively applying a
plurality of signal estimation algorithm factors responsive to
a severity of signal artifacts on the raw data stream.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The following description and examples illustrate some
exemplary embodiments of the disclosed invention in detail.
Those of skill in the art will recognize that there are
numerous variations and modifications of this invention that
are encompassed by its scope. Accordingly, the description
of a certain exemplary embodiment should not be deemed to
limit the scope of the present invention.

DEFINITIONS

In order to facilitate an understanding of the preferred
embodiments, a number of terms are defined below.

The term “EEPROM,” as used herein, is a broad term and
is used in its ordinary sense, including, without limitation,
electrically erasable programmable read-only memory,
which is user-modifiable read-only memory (ROM) that can
be erased and reprogrammed (e.g., written to) repeatedly
through the application of higher than normal electrical
voltage.

The term “SRAM,” as used herein, is a broad term and is
used in its ordinary sense, including, without limitation,
static random access memory (RAM) that retains data bits in
its memory as long as power is being supplied.

The term “A/D Converter,” as used herein, is a broad term
and is used in its ordinary sense, including, without limita-
tion, hardware and/or software that converts analog electri-
cal signals into corresponding digital signals.

The term “microprocessor,” as used herein, is a broad
term and is used in its ordinary sense, including, without
limitation a computer system or processor designed to
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perform arithmetic and logic operations using logic circuitry
that responds to and processes the basic instructions that
drive a computer.

The term “RF transceiver,” as used herein, is a broad term
and is used in its ordinary sense, including, without limita-
tion, a radio frequency transmitter and/or receiver for trans-
mitting and/or receiving signals.

The term “jitter,” as used herein, is a broad term and is
used in its ordinary sense, including, without limitation,
noise above and below the mean caused by ubiquitous noise
caused by a circuit and/or environmental effects; jitter can be
seen in amplitude, phase timing, or the width of the signal
pulse.

The terms “raw data stream” and “data stream,” as used
herein, are broad terms and are used in their ordinary sense,
including, without limitation, an analog or digital signal
directly related to the measured glucose from the glucose
sensor. In one example, the raw data stream is digital data in
“counts” converted by an A/D converter from an analog
signal (e.g., voltage or amps) representative of a glucose
concentration. The terms broadly encompass a plurality of
time spaced data points from a substantially continuous
glucose sensor, which comprises individual measurements
taken at time intervals ranging from fractions of a second up
to, e.g., 1, 2, or 5 minutes or longer.

The term “counts,” as used herein, is a broad term and is
used in its ordinary sense, including, without limitation, a
unit of measurement of a digital signal. In one example, a
raw data stream measured in counts is directly related to a
voltage (e.g., converted by an A/D converter), which is
directly related to current from the working electrode. In
another example, counter electrode voltage measured in
counts is directly related to a voltage.

The terms “glucose sensor” and “member for determining
the amount of glucose in a biological sample,” as used
herein, are broad terms and are used in an ordinary sense,
including, without limitation, any mechanism (e.g., enzy-
matic or non-enzymatic) by which glucose can be quanti-
fied. For example, some embodiments utilize a membrane
that contains glucose oxidase that catalyzes the conversion
of oxygen and glucose to hydrogen peroxide and gluconate,
as illustrated by the following chemical reaction:

Glucose+0O,—Gluconate+H,0,

Because for each glucose molecule metabolized, there is
a proportional change in the co-reactant O, and the product
H202, one can use an electrode to monitor the current
change in either the co-reactant or the product to determine
glucose concentration.

The terms “operably connected” and “operably linked,”
as used herein, are broad terms and are used in their ordinary
sense, including, without limitation, one or more compo-
nents being linked to another component(s) in a manner that
allows transmission of signals between the components. For
example, one or more electrodes can be used to detect the
amount of glucose in a sample and convert that information
into a signal, e.g., an electrical or electromagnetic signal; the
signal can then be transmitted to an electronic circuit. In this
case, the electrode is “operably linked” to the electronic
circuitry. These terms are broad enough to include wireless
connectivity.

The term “electronic circuitry,” as used herein, is a broad
term and is used in its ordinary sense, including, without
limitation, the components of a device configured to process
biological information obtained from a host. In the case of
a glucose-measuring device, the biological information is
obtained by a sensor regarding a particular glucose in a
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biological fluid, thereby providing data regarding the
amount of that glucose in the fluid. U.S. Pat. Nos. 4,757,022,
5,497,772 and 4,787,398, which are hereby incorporated by
reference, describe suitable electronic circuits that can be
utilized with devices including the biointerface membrane of
a preferred embodiment.

The term “substantially” as used herein, is a broad term
and is used in its ordinary sense, including, without limita-
tion, being largely but not necessarily wholly that which is
specified.

The term “proximal” as used herein, is a broad term and
is used in its ordinary sense, including, without limitation,
near to a point of reference such as an origin, a point of
attachment, or the midline of the body. For example, in some
embodiments of a glucose sensor, wherein the glucose
sensor is the point of reference, an oxygen sensor located
proximal to the glucose sensor will be in contact with or
nearby the glucose sensor such that their respective local
environments are shared (e.g., levels of glucose, oxygen,
pH, temperature, etc. are similar).

The term “distal” as used herein, is a broad term and is
used in its ordinary sense, including, without limitation,
spaced relatively far from a point of reference, such as an
origin or a point of attachment, or midline of the body. For
example, in some embodiments of a glucose sensor, wherein
the glucose sensor is the point of reference, an oxygen
sensor located distal to the glucose sensor will be sufficiently
far from the glucose sensor such their respective local
environments are not shared (e.g., levels of glucose, oxygen,
pH, temperature, etc. may not be similar).

The term “electrochemical cell,” as used herein, is a broad
term and is used in its ordinary sense, including, without
limitation, a device in which chemical energy is converted to
electrical energy. Such a cell typically consists of two or
more electrodes held apart from each other and in contact
with an electrolyte solution. Connection of the electrodes to
a source of direct electric current renders one of them
negatively charged and the other positively charged. Positive
ions in the electrolyte migrate to the negative electrode
(cathode) and there combine with one or more electrons,
losing part or all of their charge and becoming new ions
having lower charge or neutral atoms or molecules; at the
same time, negative ions migrate to the positive electrode
(anode) and transfer one or more electrons to it, also
becoming new ions or neutral particles. The overall effect of
the two processes is the transfer of electrons from the
negative ions to the positive ions, a chemical reaction.

The term “potentiostat,” as used herein, is a broad term
and is used in its ordinary sense, including, without limita-
tion, an electrical system that controls the potential between
the working and reference electrodes of a three-electrode
cell at a preset value. It forces whatever current is necessary
to flow between the working and counter electrodes to keep
the desired potential, as long as the needed cell voltage and
current do not exceed the compliance limits of the poten-
tiostat.

The term “electrical potential,” as used herein, is a broad
term and is used in its ordinary sense, including, without
limitation, the electrical potential difference between two
points in a circuit which is the cause of the flow of a current.

The term “host,” as used herein, is a broad term and is
used in its ordinary sense, including, without limitation,
mammals, particularly humans.

The phrase “continuous glucose sensing,” as used herein,
is a broad term and is used in its ordinary sense, including,
without limitation, the period in which monitoring of plasma
glucose concentration is continuously or continually per-
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formed, for example, at time intervals ranging from fractions
of a second up to, e.g., 1, 2, or 5 minutes, or longer.

The term “sensor head,” as used herein, is a broad term
and is used in its ordinary sense, including, without limita-
tion, the region of a monitoring device responsible for the
detection of a particular glucose. The sensor head generally
comprises a non-conductive body, a working electrode (an-
ode), a reference electrode and a counter electrode (cathode)
passing through and secured within the body forming an
electrochemically reactive surface at one location on the
body and an electronic connection at another location on the
body, and a multi-region membrane affixed to the body and
covering the electrochemically reactive surface. The counter
electrode typically has a greater electrochemically reactive
surface area than the working electrode. During general
operation of the sensor a biological sample (e.g., blood or
interstitial fluid) or a portion thereof contacts (directly or
after passage through one or more membranes or domains)
an enzyme (e.g., glucose oxidase); the reaction of the
biological sample (or portion thereof) results in the forma-
tion of reaction products that allow a determination of the
glucose level in the biological sample. In some embodi-
ments, the multi-region membrane includes an enzyme
domain (e.g., glucose oxidase), and an electrolyte phase
(e.g., a free-flowing liquid phase comprising an electrolyte-
containing fluid, as described further below).

The term “electrochemically reactive surface,” as used
herein, is a broad term and is used in its ordinary sense,
including, without limitation, the surface of an electrode
where an electrochemical reaction takes place. In the case of
the working electrode, the hydrogen peroxide produced by
the enzyme catalyzed reaction of the glucose being detected
reacts creating a measurable electronic current (e.g., detec-
tion of glucose utilizing glucose oxidase produces H,O, as
a by product, H,0O, reacts with the surface of the working
electrode producing two protons (2H"), two electrons (2e7)
and one molecule of oxygen (O,) which produces the
electronic current being detected). In the case of the counter
electrode, a reducible species, e.g., O, is reduced at the
electrode surface in order to balance the current being
generated by the working electrode.

The term “electronic connection,” as used herein, is a
broad term and is used in its ordinary sense, including,
without limitation, any electronic connection known to those
in the art that can be utilized to interface the sensor head
electrodes with the electronic circuitry of a device such as
mechanical (e.g., pin and socket) or soldered.

The terms “operably connected” and “operably linked,”
as used herein, are broad terms and are used in their ordinary
sense, including, without limitation, one or more compo-
nents being linked to another component(s) in a manner that
allows transmission of signals between the components, e.g.,
wired or wirelessly. For example, one or more electrodes can
be used to detect the amount of analyte in a sample and
convert that information into a signal; the signal can then be
transmitted to an electronic circuit means. In this case, the
electrode is “operably linked” to the electronic circuitry.

The term “sensing membrane,” as used herein, is a broad
term and is used in its ordinary sense, including, without
limitation, a permeable or semi-permeable membrane that
can be comprised of two or more domains and is typically
constructed of materials of a few microns thickness or more,
which are permeable to oxygen and may or may not be
permeable to glucose. In one example, the sensing mem-
brane comprises an immobilized glucose oxidase enzyme,
which enables an electrochemical reaction to occur to mea-
sure a concentration of glucose.
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The term “biointerface membrane,” as used herein, is a
broad term and is used in its ordinary sense, including,
without limitation, a permeable membrane that can be
comprised of two or more domains and is typically con-
structed of materials of a few microns thickness or more,
which can be placed over the sensor body to keep host cells
(e.g., macrophages) from gaining proximity to, and thereby
damaging, the sensing membrane or forming a barrier cell
layer and interfering with the transport of glucose across the
tissue-device interface.

The term “Clarke Error Grid,” as used herein, is a broad
term and is used in its ordinary sense, including, without
limitation, an error grid analysis, which evaluates the clini-
cal significance of the difference between a reference glu-
cose value and a sensor generated glucose value, taking into
account 1) the value of the reference glucose measurement,
2) the value of the sensor glucose measurement, 3) the
relative difference between the two values, and 4) the
clinical significance of this difference. See Clarke et al.,
“Evaluating Clinical Accuracy of Systems for Self-Moni-
toring of Blood Glucose,” Diabetes Care, Volume 10, Num-
ber 5, September-October 1987, which is incorporated by
reference herein in its entirety.

The term “physiologically feasible,” as used herein, is a
broad term and is used in its ordinary sense, including,
without limitation, the physiological parameters obtained
from continuous studies of glucose data in humans and/or
animals. For example, a maximal sustained rate of change of
glucose in humans of about 4 to 5 mg/dl/min and a
maximum acceleration of the rate of change of about 0.1 to
0.2 mg/dl./min/min are deemed physiologically feasible
limits. Values outside of these limits would be considered
non-physiological and likely a result of signal error, for
example. As another example, the rate of change of glucose
is lowest at the maxima and minima of the daily glucose
range, which are the areas of greatest risk in patient treat-
ment, thus a physiologically feasible rate of change can be
set at the maxima and minima based on continuous studies
of glucose data. As a further example, it has been observed
that the best solution for the shape of the curve at any point
along glucose signal data stream over a certain time period
(e.g., about 20 to 30 minutes) is a straight line, which can be
used to set physiological limits.

The term “ischemia,” as used herein, is a broad term and
is used in its ordinary sense, including, without limitation,
local and temporary deficiency of blood supply due to
obstruction of circulation to a part (e.g., sensor). Ischemia
can be caused by mechanical obstruction (e.g., arterial
narrowing or disruption) of the blood supply, for example.

The term “system noise,” as used herein, is a broad term
and is used in its ordinary sense, including, without limita-
tion, unwanted electronic or diffusion-related noise which
can include Gaussian, motion-related, flicker, kinetic, or
other white noise, for example.

The terms “signal artifacts” and “transient non-glucose
related signal artifacts that have a higher amplitude than
system noise,” as used herein, are broad terms and are used
in their ordinary sense, including, without limitation, signal
noise that is caused by substantially non-glucose reaction
rate-limiting phenomena, such as ischemia, pH changes,
temperature changes, pressure, and stress, for example.
Signal artifacts, as described herein, are typically transient
and characterized by a higher amplitude than system noise.

The terms “low noise,” as used herein, is a broad term and
is used in its ordinary sense, including, without limitation,
noise that substantially decreases signal amplitude.
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The terms “high noise” and “high spikes,” as used herein,
are broad terms and are used in their ordinary sense,
including, without limitation, noise that substantially
increases signal amplitude.

The term “frequency content,” as used herein, is a broad
term and is used in its ordinary sense, including, without
limitation, the spectral density, including the frequencies
contained within a signal and their power.

The term “spectral density,” as used herein, is a broad
term and is used in its ordinary sense, including, without
limitation, power spectral density of a given bandwidth of
electromagnetic radiation is the total power in this band-
width divided by the specified bandwidth. Spectral density
is usually expressed in Watts per Hertz (W/Hz).

The term “orthogonal transform,” as used herein, is a
broad term and is used in its ordinary sense, including,
without limitation, a general integral transform that is
defined by g(o)=[,"f(OK(c,t)dt, where K(at) represents a
set of orthogonal basis functions.

The term “Fourier Transform,” as used herein, is a broad
term and is used in its ordinary sense, including, without
limitation, a technique for expressing a waveform as a
weighted sum of sines and cosines.

The term “Discrete Fourier Transform,” as used herein, is
a broad term and is used in its ordinary sense, including,
without limitation, a specialized Fourier transform where the
variables are discrete.

The term “wavelet transform,” as used herein, is a broad
term and is used in its ordinary sense, including, without
limitation, a transform which converts a signal into a series
of wavelets, which in theory allows signals processed by the
wavelet transform to be stored more efficiently than ones
processed by Fourier transform. Wavelets can also be con-
structed with rough edges, to better approximate real-world
signals.

The term “chronoamperometry,” as used herein, is a broad
term and is used in its ordinary sense, including, without
limitation, an electrochemical measuring technique used for
electrochemical analysis or for the determination of the
kinetics and mechanism of electrode reactions. A fast-rising
potential pulse is enforced on the working (or reference)
electrode of an electrochemical cell and the current flowing
through this electrode is measured as a function of time.

The term “pulsed amperometric detection,” as used
herein, is a broad term and is used in its ordinary sense,
including, without limitation, an electrochemical flow cell
and a controller, which applies the potentials and monitors
current generated by the electrochemical reactions. The cell
can include one or multiple working electrodes at different
applied potentials. Multiple electrodes can be arranged so
that they face the chromatographic flow independently (par-
allel configuration), or sequentially (series configuration).

The term “linear regression,” as used herein, is a broad
term and is used in its ordinary sense, including, without
limitation, finding a line in which a set of data has a minimal
measurement from that line. Byproducts of this algorithm
include a slope, a y-intercept, and an R-Squared value that
determine how well the measurement data fits the line.

The term “non-linear regression,” as used herein, is a
broad term and is used in its ordinary sense, including,
without limitation, fitting a set of data to describe the
relationship between a response variable and one or more
explanatory variables in a non-linear fashion.

The term “mean,” as used herein, is a broad term and is
used in its ordinary sense, including, without limitation, the
sum of the observations divided by the number of observa-
tions.
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The term “trimmed mean,” as used herein, is a broad term
and is used in its ordinary sense, including, without limita-
tion, a mean taken after extreme values in the tails of a
variable (e.g., highs and lows) are eliminated or reduced
(e.g., “trimmed”). The trimmed mean compensates for sen-
sitivities to extreme values by dropping a certain percentage
of values on the tails. For example, the 50% trimmed mean
is the mean of the values between the upper and lower
quartiles. The 90% trimmed mean is the mean of the values
after truncating the lowest and highest 5% of the values. In
one example, two highest and two lowest measurements are
removed from a data set and then the remaining measure-
ments are averaged.

The term “non-recursive filter,” as used herein, is a broad
term and is used in its ordinary sense, including, without
limitation, an equation that uses moving averages as inputs
and outputs.

The terms “recursive filter” and “auto-regressive algo-
rithm,” as used herein, are broad terms and are used in their
ordinary sense, including, without limitation, an equation in
which includes previous averages are part of the next filtered
output. More particularly, the generation of a series of
observations whereby the value of each observation is partly
dependent on the values of those that have immediately
preceded it. One example is a regression structure in which
lagged response values assume the role of the independent
variables.

The term “signal estimation algorithm factors,” as used
herein, is a broad term and is used in its ordinary sense,
including, without limitation, one or more algorithms that
use historical and/or present signal data stream values to
estimate unknown signal data stream values. For example,
signal estimation algorithm factors can include one or more
algorithms, such as linear or non-linear regression. As
another example, signal estimation algorithm factors can
include one or more sets of coefficients that can be applied
to one algorithm.

As employed herein, the following abbreviations apply:
Eq and Egs (equivalents); mEq (milliequivalents); M (mo-
lar); mM (millimolar) pM (micromolar); N (Normal); mol
(moles); mmol (millimoles); pumol (micromoles); nmol
(nanomoles); g (grams); mg (milligrams); ug (micrograms);
Kg (kilograms); L (liters); mL (milliliters); dLL (deciliters);
pl (microliters); cm (centimeters); mm (millimeters); pm
(micrometers); nm (nanometers); h and hr (hours); min.
(minutes); s and sec. (seconds); © C. (degrees Centigrade).

Overview

The preferred embodiments relate to the use of a glucose
sensor that measures a concentration of glucose or a sub-
stance indicative of the concentration or presence of the
glucose. In some embodiments, the glucose sensor is a
continuous device, for example a subcutaneous, transder-
mal, or intravascular device. In some embodiments, the
device can analyze a plurality of intermittent blood samples.
The glucose sensor can use any method of glucose-mea-
surement, including enzymatic, chemical, physical, electro-
chemical, spectrophotometric, polarimetric, calorimetric,
iontophoretic, radiometric, or the like.

The glucose sensor can use any known method, including
invasive, minimally invasive, and non-invasive sensing
techniques, to provide a data stream indicative of the con-
centration of glucose in a host. The data stream is typically
a raw data signal that is used to provide a useful value of
glucose to a user, such as a patient or doctor, who may be
using the sensor. It is well known that raw data streams
typically include system noise such as defined herein; how-
ever the preferred embodiments address the detection and
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replacement of “signal artifacts” as defined herein. Accord-
ingly, appropriate signal estimation (e.g., filtering, data
smoothing, augmenting, projecting, and/or other methods)
replace such erroneous signals (e.g., signal artifacts) in the
raw data stream.
Glucose Sensor

The glucose sensor can be any device capable of mea-
suring the concentration of glucose. One exemplary embodi-
ment is described below, which utilizes an implantable
glucose sensor. However, it should be understood that the
devices and methods described herein can be applied to any
device capable of detecting a concentration of glucose and
providing an output signal that represents the concentration
of glucose.

FIG. 1 is an exploded perspective view of one exemplary
embodiment comprising an implantable glucose sensor 10
that utilizes amperometric electrochemical sensor technol-
ogy to measure glucose concentration. In this exemplary
embodiment, a body 12 and head 14 house the electrodes 16
and sensor electronics, which are described in more detail
below with reference to FIG. 2. Three electrodes 16 are
operably connected to the sensor electronics (FIG. 1) and are
covered by a sensing membrane 17 and a biointerface
membrane 18, which are attached by a clip 19.

In one embodiment, the three electrodes 16, which pro-
trude through the head 14, include a platinum working
electrode, a platinum counter electrode, and a silver/silver
chloride reference electrode. The top ends of the electrodes
are in contact with an electrolyte phase (not shown), which
is a free-flowing fluid phase disposed between the sensing
membrane 17 and the electrodes 16. The sensing membrane
17 includes an enzyme, e.g., glucose oxidase, which covers
the electrolyte phase. The biointerface membrane 18 covers
the sensing membrane 17 and serves, at least in part, to
protect the sensor 10 from external forces that can result in
environmental stress cracking of the sensing membrane 17.

In the illustrated embodiment, the counter electrode is
provided to balance the current generated by the species
being measured at the working electrode. In the case of a
glucose oxidase based glucose sensor, the species being
measured at the working electrode is H,O,. Glucose oxidase
catalyzes the conversion of oxygen and glucose to hydrogen
peroxide and gluconate according to the following reaction:

Glucose+0O,—Gluconate+H,0,

The change in H,O, can be monitored to determine
glucose concentration because for each glucose molecule
metabolized, there is a proportional change in the product
H,0,. Oxidation of H,O, by the working electrode is
balanced by reduction of ambient oxygen, enzyme generated
H,0,, or other reducible species at the counter electrode.
The H,O, produced from the glucose oxidase reaction
further reacts at the surface of working electrode and pro-
duces two protons (2H"), two electrons (2e7), and one
oxygen molecule (O,).

In one embodiment, a potentiostat is employed to monitor
the electrochemical reaction at the electrochemical cell. The
potentiostat applies a constant potential to the working and
reference electrodes to determine a current value. The cur-
rent that is produced at the working electrode (and flows
through the circuitry to the counter electrode) is proportional
to the amount of H,O, that diffuses to the working electrode.
Accordingly, a raw signal can be produced that is represen-
tative of the concentration of glucose in the user’s body, and
therefore can be utilized to estimate a meaningful glucose
value, such as described herein.
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One problem with raw data stream output of enzymatic
glucose sensors such as described above is caused by
transient non-glucose reaction rate-limiting phenomenon.
For example, if oxygen is deficient, relative to the amount of
glucose, then the enzymatic reaction will be limited by
oxygen rather than glucose. Consequently, the output signal
will be indicative of the oxygen concentration rather than the
glucose concentration, producing erroneous signals. Other
non-glucose reaction rate-limiting phenomenon could
include temperature and/or pH changes, for example.
Accordingly, reduction of signal noise, and particularly
replacement of transient non-glucose related signal artifacts
in the data stream that have a higher amplitude than system
noise, can be performed in the sensor and/or in the receiver,
such as described in more detail below in the sections
entitled “Signal Artifacts Detection” and “Signal Artifacts
Replacement.”

FIG. 2 is a block diagram that illustrates one possible
configuration of the sensor electronics in one embodiment.
In this embodiment, a potentiostat 20 is shown, which is
operatively connected to electrodes 16 (FIG. 1) to obtain a
current value, and includes a resistor (not shown) that
translates the current into voltage. An A/D converter 21
digitizes the analog signal into “counts” for processing.
Accordingly, the resulting raw data stream in counts is
directly related to the current measured by the potentiostat
20.

A microprocessor 22 is the central control unit that houses
EEPROM 23 and SRAM 24, and controls the processing of
the sensor electronics. It is noted that certain alternative
embodiments can utilize a computer system other than a
microprocessor to process data as described herein. In other
alternative embodiments, an application-specific integrated
circuit (ASIC) can be used for some or all the sensor’s
central processing. The EEPROM 23 provides semi-perma-
nent storage of data, for example, storing data such as sensor
identifier (ID) and programming to process data streams
(e.g., programming for signal artifacts detection and/or
replacement such as described elsewhere herein). The
SRAM 24 can be used for the system’s cache memory, for
example for temporarily storing recent sensor data.

A battery 25 is operatively connected to the microproces-
sor 22 and provides the necessary power for the sensor 10.
In one embodiment, the battery is a Lithium Manganese
Dioxide battery, however any appropriately sized and pow-
ered battery can be used (e.g., AAA, Nickel-cadmium,
Zinc-carbon, Alkaline, Lithium, Nickel-metal hydride,
Lithium-ion, Zinc-air, Zinc-mercury oxide, Silver-zinc, or
hermetically-sealed). In some embodiments the battery is
rechargeable. In some embodiments, a plurality of batteries
can be used to power the system. A Quartz Crystal 26 is
operatively connected to the microprocessor 22 and main-
tains system time for the computer system as a whole.

An RF Transceiver 27 is operably connected to the
microprocessor 22 and transmits the sensor data from the
sensor 10 to a receiver (see FIGS. 3 and 4). Although an RF
transceiver is shown here, some other embodiments can
include a wired rather than wireless connection to the
receiver. In yet other embodiments, the receiver can be
transcutaneously powered via an inductive coupling, for
example. A second quartz crystal 28 provides the system
time for synchronizing the data transmissions from the RF
transceiver. It is noted that the transceiver 27 can be sub-
stituted with a transmitter in other embodiments.

In some embodiments, a Signal Artifacts Detector 29
includes one or more of the following: an oxygen detector
29a, a pH detector 295, a temperature detector 29¢, and a
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pressure/stress detector 294, which is described in more
detail with reference to signal artifacts detection. It is noted
that in some embodiments the signal artifacts detector 29 is
a separate entity (e.g., temperature detector) operatively
connected to the microprocessor, while in other embodi-
ments, the signal artifacts detector is a part of the micro-
processor and utilizes readings from the electrodes, for
example, to detect ischemia and other signal artifacts.
Receiver

FIGS. 3A to 3D are schematic views of a receiver 30
including representations of estimated glucose values on its
user interface in first, second, third, and fourth embodi-
ments, respectively. The receiver 30 comprises systems to
receive, process, and display sensor data from the glucose
sensor 10, such as described herein. Particularly, the receiver
30 can be a pager-sized device, for example, and comprise
a user interface that has a plurality of buttons 32 and a liquid
crystal display (LCD) screen 34, and which can optionally
include a backlight. In some embodiments, the user interface
can also include a keyboard, a speaker, and a vibrator, as
described below with reference to FIG. 4.

FIG. 3A illustrates a first embodiment wherein the
receiver 30 shows a numeric representation of the estimated
glucose value on its user interface, which is described in
more detail elsewhere herein.

FIG. 3B illustrates a second embodiment wherein the
receiver 30 shows an estimated glucose value and approxi-
mately one hour of historical trend data on its user interface,
which is described in more detail elsewhere herein.

FIG. 3C illustrates a third embodiment wherein the
receiver 30 shows an estimated glucose value and approxi-
mately three hours of historical trend data on its user
interface, which is described in more detail elsewhere
herein.

FIG. 3D illustrates a fourth embodiment wherein the
receiver 30 shows an estimated glucose value and approxi-
mately nine hours of historical trend data on its user inter-
face, which is described in more detail elsewhere herein.

In some embodiments, a user can toggle through some or
all of the screens shown in FIGS. 3A to 3D using a toggle
button on the receiver. In some embodiments, the user will
be able to interactively select the type of output displayed on
their user interface. In other embodiments, the sensor output
can have alternative configurations.

FIG. 4 is a block diagram that illustrates one possible
configuration of the receiver’s 30 electronics. It is noted that
the receiver 30 can comprise a configuration such as
described with reference to FIGS. 3A to 3D, above. Alter-
natively, the receiver 30 can comprise other configurations,
including a desktop computer, laptop computer, a personal
digital assistant (PDA), a server (local or remote to the
receiver), or the like. In some embodiments, the receiver 30
can be adapted to connect (via wired or wireless connection)
to a desktop computer, laptop computer, PDA, server (local
or remote to the receiver), or the like, in order to download
data from the receiver 30. In some alternative embodiments,
the receiver 30 can be housed within or directly connected
to the sensor 10 in a manner that allows sensor and receiver
electronics to work directly together and/or share data
processing resources. Accordingly, the receiver’s electronics
can be generally referred to as a “computer system.”

A quartz crystal 40 is operatively connected to an RF
transceiver 41 that together function to receive and synchro-
nize data streams (e.g., raw data streams transmitted from
the RF transceiver). Once received, a microprocessor 42
processes the signals, such as described below.
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The microprocessor 42 is the central control unit that
provides the processing, such as calibration algorithms
stored within EEPROM 43. The EEPROM 43 is operatively
connected to the microprocessor 42 and provides semi-
permanent storage of data, storing data such as receiver 1D
and programming to process data streams (e.g., program-
ming for performing calibration and other algorithms
described elsewhere herein). SRAM 44 is used for the
system’s cache memory and is helpful in data processing.

A battery 45 is operatively connected to the microproces-
sor 42 and provides power for the receiver. In one embodi-
ment, the battery is a standard AAA alkaline battery, how-
ever any appropriately sized and powered battery can be
used. In some embodiments, a plurality of batteries can be
used to power the system. A quartz crystal 46 is operatively
connected to the microprocessor 42 and maintains system
time for the computer system as a whole.

A user interface 47 comprises a keyboard 2, speaker 3,
vibrator 4, backlight 5, liquid crystal display (LCD 6), and
one or more buttons 7. The components that comprise the
user interface 47 provide controls to interact with the user.
The keyboard 2 can allow, for example, input of user
information about himself/herself, such as mealtime, exer-
cise, insulin administration, and reference glucose values.
The speaker 3 can provide, for example, audible signals or
alerts for conditions such as present and/or predicted hyper-
and hypoglycemic conditions. The vibrator 4 can provide,
for example, tactile signals or alerts for reasons such as
described with reference to the speaker, above. The back-
light 5 can be provided, for example, to aid the user in
reading the LCD in low light conditions. The LCD 6 can be
provided, for example, to provide the user with visual data
output such as is illustrated in FIGS. 3A to 3D. The buttons
7 can provide for toggle, menu selection, option selection,
mode selection, and reset, for example.

Communication ports, including a PC communication
(com) port 48 and a reference glucose monitor com port 49
can be provided to enable communication with systems that
are separate from, or integral with, the receiver 30. The PC
com port 48, for example, a serial communications port,
allows for communicating with another computer system
(e.g., PC, PDA, server, or the like). In one exemplary
embodiment, the receiver 30 is able to download historical
data to a physician’s PC for retrospective analysis by the
physician. The reference glucose monitor com port 49
allows for communicating with a reference glucose monitor
(not shown) so that reference glucose values can be down-
loaded into the receiver 30, for example, automatically. In
one embodiment, the reference glucose monitor is integral
with the receiver 30, and the reference glucose com port 49
allows internal communication between the two integral
systems. In another embodiment, the reference glucose
monitor com port 49 allows a wireless or wired connection
to reference glucose monitor such as a self-monitoring blood
glucose monitor (e.g., for measuring finger stick blood
samples).

Calibration

Reference is now made to FIG. 5, which is a flow chart
that illustrates the process of initial calibration and data
output of the glucose sensor 10 in one embodiment.

Calibration of the glucose sensor 10 comprises data
processing that converts a sensor data stream into an esti-
mated glucose measurement that is meaningful to a user.
Accordingly, a reference glucose value can be used to
calibrate the data stream from the glucose sensor 10.

At block 51, a sensor data receiving module, also referred
to as the sensor data module, receives sensor data (e.g., a
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data stream), including one or more time-spaced sensor data
points, from a sensor via the receiver, which can be in wired
or wireless communication with the sensor. Some or all of
the sensor data point(s) can be replaced by estimated signal
values to address signal noise such as described in more
detail elsewhere herein. It is noted that during the initial-
ization of the sensor, prior to initial calibration, the receiver
30 (e.g., computer system) receives and stores the sensor
data, however it may not display any data to the user until
initial calibration and eventually stabilization of the sensor
10 has been determined.

At block 52, a reference data receiving module, also
referred to as the reference input module, receives reference
data from a reference glucose monitor, including one or
more reference data points. In one embodiment, the refer-
ence glucose points can comprise results from a self-moni-
tored blood glucose test (e.g., from a finger stick test). In one
such embodiment, the user can administer a self-monitored
blood glucose test to obtain glucose value (e.g., point) using
any known glucose sensor, and enter the numeric glucose
value into the computer system. In another such embodi-
ment, a self-monitored blood glucose test comprises a wired
or wireless connection to the receiver 30 (e.g. computer
system) so that the user simply initiates a connection
between the two devices, and the reference glucose data is
passed or downloaded between the self-monitored blood
glucose test and the receiver 30. In yet another such embodi-
ment, the self-monitored glucose test is integral with the
receiver 30 so that the user simply provides a blood sample
to the receiver 30, and the receiver 30 runs the glucose test
to determine a reference glucose value.

Certain acceptability parameters can be set for reference
values received from the user. For example, in one embodi-
ment, the receiver may only accept reference glucose values
between about 40 and about 400 mg/dL..

At block 53, a data matching module, also referred to as
the processor module, matches reference data (e.g., one or
more reference glucose data points) with substantially time
corresponding sensor data (e.g., one or more sensor data
points) to provide one or more matched data pairs. In one
embodiment, one reference data point is matched to one time
corresponding sensor data point to form a matched data pair.
In another embodiment, a plurality of reference data points
are averaged (e.g., equally or non-equally weighted average,
mean-value, median, or the like) and matched to one time
corresponding sensor data point to form a matched data pair.
In another embodiment, one reference data point is matched
to a plurality of time corresponding sensor data points
averaged to form a matched data pair. In yet another
embodiment, a plurality of reference data points are aver-
aged and matched to a plurality of time corresponding
sensor data points averaged to form a matched data pair.

In one embodiment, a time corresponding sensor data
comprises one or more sensor data points that occur, for
example, 15+5 min after the reference glucose data time-
stamp (e.g., the time that the reference glucose data is
obtained). In this embodiment, the minute time delay has
been chosen to account for an approximately 10 minute
delay introduced by the filter used in data smoothing and an
approximately 5 minute physiological time-lag (e.g., the
time necessary for the glucose to diffusion through a mem-
brane(s) of an glucose sensor). In alternative embodiments,
the time corresponding sensor value can be more or less than
in the above-described embodiment, for example 60 min-
utes. Variability in time correspondence of sensor and ref-
erence data can be attributed to, for example, a longer or
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shorter time delay introduced during signal estimation, or if
the configuration of the glucose sensor 10 incurs a greater or
lesser physiological time lag.

In some practical implementations of the sensor 10, the
reference glucose data can be obtained at a time that is
different from the time that the data is input into the receiver
30. Accordingly, it should be noted that the “time stamp” of
the reference glucose (e.g., the time at which the reference
glucose value was obtained) may not be the same as the time
at which the receiver 30 obtained the reference glucose data.
Therefore, some embodiments include a time stamp require-
ment that ensures that the receiver 30 stores the accurate
time stamp for each reference glucose value, that is, the time
at which the reference value was actually obtained from the
user.

In some embodiments, tests are used to evaluate the
best-matched pair using a reference data point against indi-
vidual sensor values over a predetermined time period (e.g.,
about 30 minutes). In one such embodiment, the reference
data point is matched with sensor data points at S-minute
intervals and each matched pair is evaluated. The matched
pair with the best correlation can be selected as the matched
pair for data processing. In some alternative embodiments,
matching a reference data point with an average of a
plurality of sensor data points over a predetermined time
period can be used to form a matched pair.

At block 54, a calibration set module, also referred to as
the processor module, forms an initial calibration set from a
set of one or more matched data pairs, which are used to
determine the relationship between the reference glucose
data and the sensor glucose data, such as described in more
detail with reference to block 55, below.

The matched data pairs, which make up the initial cali-
bration set, can be selected according to predetermined
criteria. In some embodiments, the number (n) of data
pair(s) selected for the initial calibration set is one. In other
embodiments, n data pairs are selected for the initial cali-
bration set wherein n is a function of the frequency of the
received reference data points. In one exemplary embodi-
ment, six data pairs make up the initial calibration set.

In some embodiments, the data pairs are selected only
within a certain glucose value threshold, for example
wherein the reference glucose value is between about 40 and
about 400 mg/dL.. In some embodiments, the data pairs that
form the initial calibration set are selected according to their
time stamp.

At block 55, the conversion function module uses the
calibration set to create a conversion function. The conver-
sion function substantially defines the relationship between
the reference glucose data and the glucose sensor data. A
variety of known methods can be used with the preferred
embodiments to create the conversion function from the
calibration set. In one embodiment, wherein a plurality of
matched data points form the initial calibration set, a linear
least squares regression is performed on the initial calibra-
tion set such as described in more detail with reference to
FIG. 6.

At block 56, a sensor data transformation module uses the
conversion function to transform sensor data into substan-
tially real-time glucose value estimates, also referred to as
calibrated data, as sensor data is continuously (or intermit-
tently) received from the sensor. In other words, the offset
value at any given point in time can be subtracted from the
raw value (e.g., in counts) and divided by the slope to obtain
the estimated glucose value:
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(rawvalue — offset)
mg/dl= ——mM =
slope

In some alternative embodiments, the sensor and/or ref-
erence glucose values are stored in a database for retrospec-
tive analysis.

At block 57, an output module provides output to the user
via the user interface. The output is representative of the
estimated glucose value, which is determined by converting
the sensor data into a meaningful glucose value such as
described in more detail with reference to block 56, above.
User output can be in the form of a numeric estimated
glucose value, an indication of directional trend of glucose
concentration, and/or a graphical representation of the esti-
mated glucose data over a period of time, for example. Other
representations of the estimated glucose values are also
possible, for example audio and tactile.

In one embodiment, such as shown in FIG. 3A, the
estimated glucose value is represented by a numeric value.
In other exemplary embodiments, such as shown in FIGS.
3B to 3D, the user interface graphically represents the
estimated glucose data trend over predetermined a time
period (e.g., one, three, and nine hours, respectively). In
alternative embodiments, other time periods can be repre-
sented.

Accordingly, after initial calibration of the sensor, real-
time continuous glucose information can be displayed on the
user interface so that the user can regularly and proactively
care for his/her diabetic condition within the bounds set by
his/her physician.

In alternative embodiments, the conversion function is
used to predict glucose values at future points in time. These
predicted values can be used to alert the user of upcoming
hypoglycemic or hyperglycemic events. Additionally, pre-
dicted values can be used to compensate for the time lag
(e.g., 15 minute time lag such as described elsewhere
herein), so that an estimated glucose value displayed to the
user represents the instant time, rather than a time delayed
estimated value.

In some embodiments, the substantially real-time esti-
mated glucose value, a predicted future estimated glucose
value, a rate of change, and/or a directional trend of the
glucose concentration is used to control the administration
of a constituent to the user, including an appropriate amount
and time, in order to control an aspect of the user’s biologi-
cal system. One such example is a closed loop glucose
sensor and insulin pump, wherein the glucose data (e.g.,
estimated glucose value, rate of change, and/or directional
trend) from the glucose sensor is used to determine the
amount of insulin, and time of administration, that can be
given to a diabetic user to evade hyper- and hypoglycemic
conditions.

FIG. 6 is a graph that illustrates one embodiment of a
regression performed on a calibration set to create a con-
version function such as described with reference to FIG. 5,
block 55, above. In this embodiment, a linear least squares
regression is performed on the initial calibration set. The
x-axis represents reference glucose data; the y-axis repre-
sents sensor data. The graph pictorially illustrates regression
of matched pairs 66 in the calibration set. The regression
calculates a slope 62 and an offset 64, for example, using the
well-known slope-intercept equation (y=mx+b), which
defines the conversion function.

In alternative embodiments, other algorithms could be
used to determine the conversion function, for example
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forms of linear and non-linear regression, for example fuzzy
logic, neural networks, piece-wise linear regression, poly-
nomial fit, genetic algorithms, and other pattern recognition
and signal estimation techniques.

In yet other alternative embodiments, the conversion
function can comprise two or more different optimal con-
versions because an optimal conversion at any time is
dependent on one or more parameters, such as time of day,
calories consumed, exercise, or glucose concentration above
or below a set threshold, for example. In one such exemplary
embodiment, the conversion function is adapted for the
estimated glucose concentration (e.g., high vs. low). For
example in an implantable glucose sensor it has been
observed that the cells surrounding the implant will consume
at least a small amount of glucose as it diffuses toward the
glucose sensor. Assuming the cells consume substantially
the same amount of glucose whether the glucose concen-
tration is low or high, this phenomenon will have a greater
effect on the concentration of glucose during low blood
sugar episodes than the effect on the concentration of
glucose during relatively higher blood sugar episodes.
Accordingly, the conversion function can be adapted to
compensate for the sensitivity differences in blood sugar
level. In one implementation, the conversion function com-
prises two different regression lines, wherein a first regres-
sion line is applied when the estimated blood glucose
concentration is at or below a certain threshold (e.g., 150
mg/dl) and a second regression line is applied when the
estimated blood glucose concentration is at or above a
certain threshold (e.g., 150 mg/dL). In one alternative imple-
mentation, a predetermined pivot of the regression line that
forms the conversion function can be applied when the
estimated blood is above or below a set threshold (e.g., 150
mg/dl), wherein the pivot and threshold are determined
from a retrospective analysis of the performance of a con-
version function and its performance at a range of glucose
concentrations. In another implementation, the regression
line that forms the conversion function is pivoted about a
point in order to comply with clinical acceptability standards
(e.g., Clarke Error Grid, Consensus Grid, mean absolute
relative difference, or other clinical cost function). Although
only a few example implementations are described, other
embodiments include numerous implementations wherein
the conversion function is adaptively applied based on one
or more parameters that can affect the sensitivity of the
sensor data over time.

Additional methods for processing sensor glucose data are
disclosed in copending U.S. patent application Ser. No.
10/633,367 filed Aug. 1, 2003 and entitled, “SYSTEM AND
METHODS FOR PROCESSING ANALYTE SENSOR
DATA,” which is incorporated herein by reference in its
entirety. In view of the above-described data processing, it
should be obvious that improving the accuracy of the data
stream will be advantageous for improving output of glucose
sensor data. Accordingly, the following description is related
to improving data output by decreasing signal artifacts on
the raw data stream from the sensor. The data smoothing
methods of preferred embodiments can be employed in
conjunction with any sensor or monitor measuring levels of
an analyte in vivo, wherein the level of the analyte fluctuates
over time, including but not limited to such sensors as
described in U.S. Pat. No. 6,001,067 to Shults et al.; U.S.
Patent Application 2003/0023317 to Brauker et al.; U.S. Pat.
No. 6,212,416 to Ward et al.; U.S. Pat. No. 6,119,028 to
Schulman et al; U.S. Pat. No. 6,400,974 to Lesho; U.S. Pat.
No. 6,595,919 to Berner et al.; U.S. Pat. No. 6,141,573 to
Kurnik et al.; U.S. Pat. No. 6,122,536 to Sun et al.; European
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Patent Application EP 1153571 to Varall et al.; U.S. Pat. No.
6,512,939 to Colvin et al.; U.S. Pat. No. 5,605,152 to Slate
et al.; U.S. Pat. No. 4,431,004 to Bessman et al.; U.S. Pat.
No. 4,703,756 to Gough et al; U.S. Pat. No. 6,514,718 to
Heller et al; and U.S. Pat. No. 5,985,129 to Gough et al.,
each of which are incorporated in there entirety herein by
reference.

Signal Artifacts

Typically, a glucose sensor produces a data stream that is
indicative of the glucose concentration of a host, such as
described in more detail above. However, it is well known
that the above described glucose sensor is only one example
of an abundance of glucose sensors that are able to provide
raw data output indicative of the concentration of glucose.
Thus, it should be understood that the systems and methods
described herein, including signal artifacts detection, signal
artifacts replacement, and other data processing, can be
applied to a data stream obtained from any glucose sensor.

Raw data streams typically have some amount of “system
noise,” caused by unwanted electronic or diffusion-related
noise that degrades the quality of the signal and thus the
data. Accordingly, conventional glucose sensors are known
to smooth raw data using methods that filter out this system
noise, and the like, in order to improve the signal to noise
ratio, and thus data output. One example of a conventional
data-smoothing algorithm includes a finite impulse response
filter (FIR), which is particularly suited for reducing high-
frequency noise (see Steil et al. U.S. Pat. No. 6,558,351).

FIGS. 7A and 7B are graphs of raw data streams from an
implantable glucose sensor prior to data smoothing. FIG. 7A
is a graph that shows a raw data stream obtained from a
glucose sensor over an approximately 4 hour time span in
one example. FIG. 7B is a graph that shows a raw data
stream obtained from a glucose sensor over an approxi-
mately 36 hour time span in another example. The x-axis
represents time in minutes. The y-axis represents sensor data
in counts. In these examples, sensor output in counts is
transmitted every 30-seconds.

The “system noise” such as shown in sections 72a, 725 of
the data streams of FIGS. 7A and 7B, respectively, illustrate
time periods during which system noise can be seen on the
data stream. This system noise can be characterized as
Gaussian, Brownian, and/or linear noise, and can be sub-
stantially normally distributed about the mean. The system
noise is likely electronic and diffusion-related, or the like,
and can be smoothed using techniques such as by using an
FIR filter. The system noise such as shown in the data of
sections 72a, 72b is a fairly accurate representation of
glucose concentration and can be confidently used to report
glucose concentration to the user when appropriately cali-
brated.

The “signal artifacts” such as shown in sections 74a, 745
of the data stream of FIGS. 7A and 7B, respectively,
illustrate time periods during which “signal artifacts” can be
seen, which are significantly different from the previously
described system noise (sections 72a, 72b). This noise, such
as shown in section 74a and 74b, is referred to herein as
“signal artifacts” and more particularly described as “tran-
sient non-glucose dependent signal artifacts that have a
higher amplitude than system noise.” At times, signal arti-
facts comprise low noise, which generally refers to noise
that substantially decreases signal amplitude 76a, 765
herein, which is best seen in the signal artifacts 745 of FIG.
7B. Occasional high spikes 78a, 785, which generally cor-
respond to noise that substantially increases signal ampli-
tude, can also be seen in the signal artifacts, which generally
occur after a period of low noise. These high spikes are
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generally observed after transient low noise and typically
result after reaction rate-limiting phenomena occur. For
example, in an embodiment where a glucose sensor requires
an enzymatic reaction, local ischemia creates a reaction that
is rate-limited by oxygen, which is responsible for low
noise. In this situation, glucose would be expected to build
up in the membrane because it would not be completely
catabolized during the oxygen deficit. When oxygen is again
in excess, there would also be excess glucose due to the
transient oxygen deficit. The enzyme rate would speed up
for a short period until the excess glucose is catabolized,
resulting in high noise.

Analysis of signal artifacts such as shown sections 74a,
74b of FIGS. 7A and 7B, respectively, indicates that the
observed low noise is caused by substantially non-glucose
reaction dependent phenomena, such as ischemia that occurs
within or around a glucose sensor in vivo, for example,
which results in the reaction becoming oxygen dependent.
As a first example, at high glucose levels, oxygen can
become limiting to the enzymatic reaction, resulting in a
non-glucose dependent downward trend in the data (best
seen in FIG. 7B). As a second example, certain movements
or postures taken by the patient can cause transient down-
ward noise as blood is squeezed out of the capillaries
resulting in local ischemia, and causing non-glucose depen-
dent low noise. Because excess oxygen (relative to glucose)
is necessary for proper sensor function, transient ischemia
can result in a loss of signal gain in the sensor data. In this
second example oxygen can also become transiently limited
due to contracture of tissues around the sensor interface.
This is similar to the blanching of skin that can be observed
when one puts pressure on it. Under such pressure, transient
ischemia can occur in both the epidermis and subcutaneous
tissue. Transient ischemia is common and well tolerated by
subcutaneous tissue.

In another example of non-glucose reaction rate-limiting
phenomena, skin temperature can vary dramatically, which
can result in thermally related erosion of the signal (e.g.,
temperature changes between 32 and 39 degrees Celsius
have been measured in humans). In yet another embodiment,
wherein the glucose sensor is placed intravenously,
increased impedance can result from the sensor resting
against wall of the blood vessel, for example, producing this
non-glucose reaction rate-limiting noise due to oxygen defi-
ciency.

Because signal artifacts are not mere system noise, but
rather are caused by specific rate-limiting mechanisms,
methods used for conventional random noise filtration pro-
duce data lower (or in some cases higher) than the actual
blood glucose levels due to the expansive nature of these
signal artifacts. To overcome this, the preferred embodi-
ments provide systems and methods for replacing at least
some of the signal artifacts by estimating glucose signal
values.

FIG. 8 is a flow chart that illustrates the process of
detecting and replacing signal artifacts in certain embodi-
ments. It is noted that “signal artifacts” particularly refers to
the transient non-glucose related artifacts that has a higher
amplitude than that of system noise. Typically, signal arti-
facts are caused by non-glucose rate-limiting phenomenon
such as described in more detail above.

At block 82, a sensor data receiving module, also referred
to as the sensor data module 82, receives sensor data (e.g.,
a data stream), including one or more time-spaced sensor 10
data points. In some embodiments, the data stream is stored
in the sensor for additional processing; in some alternative
embodiments, the sensor 10 periodically transmits the data
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stream to the receiver 30, which can be in wired or wireless
communication with the sensor.

At block 84, a signal artifacts detection module, also
referred to as the signal artifacts detector 84, is programmed
to detect transient non-glucose related signal artifacts in the
data stream that have a higher amplitude than system noise,
such as described in more detail with reference to FIGS. 7A
and 7B, above. The signal artifacts detector can comprise an
oxygen detector, a pH detector, a temperature detector,
and/or a pressure/stress detector, for example, the signal
artifacts detector 29 in FIG. 2. In some embodiments, the
signal artifacts detector at block 84 is located within the
microprocessor 22 in FIG. 2 and utilizes existing compo-
nents of the glucose sensor 10 to detect signal artifacts, for
example by pulsed amperometric detection, counter elec-
trode monitoring, reference electrode monitoring, and fre-
quency content monitoring, which are described elsewhere
herein. In yet other embodiments, the data stream can be sent
from the sensor to the receiver which comprises program-
ming in the microprocessor 42 in FIG. 4 that performs
algorithms to detect signal artifacts, for example such as
described with reference to “Cone of Possibility Detection”
method described in more detail below. Numerous embodi-
ments for detecting signal artifacts are described in more
detail in the section entitled, “Signal Artifacts Detection,” all
of' which are encompassed by the signal artifacts detection at
block 84.

At block 86, the signal artifacts replacement module, also
referred to as the signal estimation module, replaces some or
an entire data stream with estimated glucose signal values
using signal estimation. Numerous embodiments for per-
forming signal estimation are described in more detail in the
section entitled “Signal Artifacts Replacement,” all of which
are encompassed by the signal artifacts replacement module,
block 86. It is noted that in some embodiments, signal
estimation/replacement is initiated in response to positive
detection of signal artifacts on the data stream, and subse-
quently stopped in response to detection of negligible signal
artifacts on the data stream. In some embodiments, the
system waits a predetermined time period (e.g., between 30
seconds and 30 minutes) before switching the signal esti-
mation on or off to ensure that a consistent detection has
been ascertained. In some embodiments, however, signal
estimation/replacement can continuously or continually run.

Some embodiments of signal estimation can additionally
include discarding data that is considered sufficiently unre-
liable and/or erroneous such that the data should not be used
in a signal estimation algorithm. In these embodiments, the
system can be programmed to discard outlier data points, for
example data points that are so extreme that they can skew
the data even with the most comprehensive filtering or signal
estimation, and optionally replace those points with a pro-
jected value based on historical data or present data (e.g.,
linear regression, recursive filtering, or the like). One
example of discarding sensor data includes discarding sen-
sor data that falls outside of a “Cone of Possibility” such as
described in more detail elsewhere herein. Another example
includes discarding sensor data when signal artifacts detec-
tion detects values outside of a predetermined threshold
(e.g., oxygen concentration below a set threshold, tempera-
ture above a certain threshold, signal amplitude above a
certain threshold, etc). Any of the signal estimation/replace-
ment algorithms described herein can then be used to project
data values for those data that were discarded.

Signal Artifacts Detection

Analysis of signals from glucose sensors indicates at least

two types of noise, which are characterized herein as 1)
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system noise and 2) signal artifacts, such as described in
more detail above. It is noted that system noise is easily
smoothed using the algorithms provided herein; however,
the systems and methods described herein particularly
address signal artifacts, by replacing transient erroneous
signal noise caused by rate-limiting phenomenon with esti-
mated signal values.

In certain embodiments of signal artifacts detection, oxy-
gen monitoring is used to detect whether transient non-
glucose dependent signal artifacts due to ischemia. Low
oxygen concentrations in or near the glucose sensor can
account for a large part of the transient non-glucose related
signal artifacts as defined herein on a glucose sensor signal,
particularly in subcutaneously implantable glucose sensors.
Accordingly, detecting oxygen concentration, and determin-
ing if ischemia exists can discover ischemia-related signal
artifacts. A variety of methods can be used to test for oxygen.
For example, an oxygen-sensing electrode, or other oxygen
sensor can be employed. The measurement of oxygen con-
centration can be sent to a microprocessor, which determines
if the oxygen concentration indicates ischemia.

In some embodiments of ischemia detection, an oxygen
sensor is placed proximal to or within the glucose sensor.
For example, the oxygen sensor can be located on or near the
glucose sensor such that their respective local environments
are shared and oxygen concentration measurement from the
oxygen sensor represents an accurate measurement of the
oxygen concentration on or within the glucose sensor. In
some alternative embodiments of ischemia detection, an
oxygen sensor is also placed distal to the glucose sensor. For
example, the oxygen sensor can be located sufficiently far
from the glucose sensor such that their respective local
environments are not shared and oxygen measurements from
the proximal and distal oxygen sensors can be compared to
determine the relative difference between the respective
local environments. By comparing oxygen concentration
proximal and distal oxygen sensor, change in local (proxi-
mal) oxygen concentration can be determined from a refer-
ence (distal) oxygen concentration.

Oxygen sensors are useful for a variety of purposes. For
example, U.S. Pat. No. 6,512,939 to Colvin et al., which is
incorporated herein by reference, discloses an oxygen sensor
that measures background oxygen levels. However, Colvin
et al. rely on the oxygen sensor for the data stream of glucose
measurements by subtraction of oxygen remaining after
exhaustion of glucose by an enzymatic reaction from total
unreacted oxygen concentration.

In another embodiment of ischemia detection, wherein the
glucose sensor is an electrochemical sensor that includes a
potentiostat, pulsed amperometric detection can be
employed to determine an oxygen measurement. Pulsed
amperometric detection includes switching, cycling, or puls-
ing the voltage of the working electrode (or reference
electrode) in an electrochemical system, for example
between a positive voltage (e.g., +0.6 for detecting glucose)
and a negative voltage (e.g., —0.6 for detecting oxygen). U.S.
Pat. No. 4,680,268 to Clark, Jr., which is incorporated by
reference herein, describes pulsed amperometric detection.
In contrast to using signal replacement, Clark, Jr. addresses
oxygen deficiency by supplying additional oxygen to the
enzymatic reaction.

In another embodiment of ischemia detection, wherein the
glucose sensor is an electrochemical sensor and contains a
potentiostat, oxygen deficiency can be seen at the counter
electrode when insufficient oxygen is available for reduc-
tion, which thereby affects the counter electrode in that it is
unable to balance the current coming from the working
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electrode. When insufficient oxygen is available for the
counter electrode, the counter electrode can be driven in its
electrochemical search for electrons all the way to its most
negative value, which could be ground or 0.0V, which
causes the reference to shift, reducing the bias voltage such
as described in more detail below. In other words, a common
result of ischemia will be seen as a drop off in sensor current
as a function of glucose concentration (e.g., lower sensitiv-
ity). This happens because the working electrode no longer
oxidizes all of the H,O, arriving at its surface because of the
reduced bias. In some extreme circumstances, an increase in
glucose can produce no increase in current or even a
decrease in current.

FIG. 9 is a graph that shows a comparison of sensor
current and counter-electrode voltage in a host over time.
The x-axis represents time in minutes. The first y-axis 91
represents sensor counts from the working electrode and
thus plots a raw sensor data stream 92 for the glucose sensor
over a period of time. The second y-axis 93 represents
counter-electrode voltage 94 in counts. The graph illustrates
the correlation between sensor data 92 and counter-electrode
voltage 94; particularly, that erroneous counter electrode
function 96 where the counter voltages drops approximately
to zero substantially coincides with transient non-glucose
related signal artifacts 98. In other words, when counter-
electrode voltage is at or near zero, sensor data includes
signal artifacts.

In another embodiment of ischemia detection, wherein the
glucose sensor is an electrochemical sensor and contains a
two- or three-cell electrochemical cell, signal artifacts are
detected by monitoring the reference electrode. This “refer-
ence drift detection” embodiment takes advantage of the fact
that the reference electrode will vary or drift in order to
maintain a stable bias potential with the working electrode,
such as described in more detail herein. This “drifting”
generally indicates non-glucose reaction rate-limiting noise,
for example due to ischemia. It is noted that the following
example describes an embodiment wherein the sensor
includes a working, reference, and counter electrodes, such
as described in more detail elsewhere herein; however the
principles of this embodiment are applicable to a two-cell
(e.g., anode and cathode) electrochemical cell as is under-
stood in the art.

FIG. 10A is a circuit diagram of a potentiostat that
controls a typical three-clectrode system, which can be
employed with a glucose sensor 10 such as described with
reference to FIGS. 1 and 2. The potentiostat includes a
working electrode 100, a reference electrode 102, and a
counter electrode 104. The voltage applied to the working
electrode is a constant value (e.g., +1.2V) and the voltage
applied to the reference electrode is also set at a constant
value (e.g., +0.6V) such that the potential (Vg,,s) applied
between the working and reference electrodes is maintained
at a constant value (e.g., +0.6V). The counter electrode is
configured to have a constant current (equal to the current
being measured by the working electrode), which is accom-
plished by varying the voltage at the counter electrode in
order to balance the current going through the working
electrode 100 such that current does not pass through the
reference electrode 102. A negative feedback loop 107 is
constructed from an operational amplifier (OP AMP), the
reference electrode 102, the counter electrode 104, and a
reference potential, to maintain the reference electrode at a
constant voltage.

In practice, a glucose sensor of one embodiment com-
prises a membrane that contains glucose oxidase that cata-
lyzes the conversion of oxygen and glucose to hydrogen
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peroxide and gluconate, such as described with reference to
FIGS. 1 and 2. Therefore for each glucose molecule metabo-
lized there is a change equivalent in molecular concentration
in the co-reactant O, and the product H,O,. Consequently,
one can use an electrode (e.g., working electrode 100) to
monitor the concentration-induced current change in either
the co-reactant or the product to determine glucose concen-
tration.

One limitation of the electrochemistry is seen when
insufficient negative voltage is available to the counter
electrode 104 to balance the working electrode 100. This
limitation can occur when insufficient oxygen is available to
the counter electrode 104 for reduction, for example. When
this limitation occurs, the counter electrode can no longer
vary its voltage to maintain a balanced current with the
working electrode and thus the negative feedback loop 107
used to maintain the reference electrode is compromised.
Consequently, the reference electrode voltage will change or
“drift,” altering the applied bias potential (i.e., the potential
applied between the working and reference electrodes),
thereby decreasing the applied bias potential. When this
change in applied bias potential occurs, the working elec-
trode can produce erroneous glucose measurements due to
either increased or decreased signal strength (Iszysg)-

FIG. 10B a diagram referred to as Cyclic-Voltammetry
(CV) curve, wherein the x-axis represents the applied poten-
tial (Vz;,5) and the y-axis represents the signal strength of
the working electrode (I¢zysz). A curve 108 illustrates an
expected CV curve when the potentiostat is functioning
normally. Typically, desired bias voltage can be set (e.g.,
Vsr4s1) and a resulting current will be sensed (e.g. Iizasz)-
As the voltage decreases (e.g., Vg;45,) due to reference
voltage drift, for example, a new resulting current is sensed
(e.g., Lsznsen)- Therefore, the change in bias is an indicator
of signal artifacts and can be used in signal estimation and
to replace the erroneous resulting signals. In addition to
ischemia, the local environment at the electrode surfaces can
affect the CV curve, for example, changes in pH, tempera-
ture, and other local biochemical species can significantly
alter the location of the CV curve.

FIG. 10C is a CV curve that illustrates an alternative
embodiment of signal artifacts detection, wherein pH and/or
temperature can be monitoring using the CV curve and
diagnosed to detect transient non-glucose related signal
artifacts. For example, signal artifacts can be attributed to
thermal changes and/or pH changes in some embodiments
because certain changes in pH and temperature affect data
from a glucose sensor that relies on an enzymatic reaction to
measure glucose. Signal artifacts caused by pH changes,
temperature changes, changes in available electrode surface
area, and other local biochemical species can be detected
and signal estimation can be applied an/or optimized such as
described in more detail elsewhere herein. In FIG. 10C, a
first curve 108 illustrates an expected CV curve when the
potentiostat is functioning normally. A second curve 109
illustrates a CV curve wherein the environment has changed
as indicated by the upward shift of the CV curve.

In some embodiments, pH and/or temperature measure-
ments are obtained proximal to the glucose sensor; in some
embodiments, pH and/or temperature measurements are also
obtained distal to the glucose sensor and the respective
measurements compared, such as described in more detail
above with reference to oxygen sensors.

In another implementation of signal artifacts detection,
wherein temperature is detected, an electronic thermometer
can be proximal to or within the glucose sensor, such that the
temperature measurement is representative of the tempera-
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ture of the glucose sensor’s local environment. It is noted
that accurate sensor function depends on diffusion of mol-
ecules from the blood to the interstitial fluid, and then
through the membranes of the device to the enzyme mem-
brane. Additionally, diffusion transport of hydrogen perox-
ide from the enzyme membrane to the electrode occurs.
Therefore, temperatures can be a rate determining parameter
of diffusion. As temperature decreases, diffusion transport
decreases. Under certain human conditions, such as hypo-
thermia or fever, the variations can be considerably greater.
Additionally, under normal conditions, the temperature of
subcutaneous tissue is known to vary considerably more
than core tissues (e.g., core temperature). Temperature
thresholds can be set to detect signal artifacts accordingly.

In another implementation, a pH detector is used to detect
signal artifacts. In glucose sensors that rely on enzymatic
reactions, a pH of the fluid to be sensed can be within the
range of about 5.5 to 7.5. Outside of this range, effects may
be seen in the enzymatic reaction and therefore data output
of the glucose sensor. Accordingly, by detecting if the pH is
outside of a predetermined range (e.g., 5.5 to 7.5), a pH
detector may detect transient non-glucose related signal
artifacts such as described herein. It is noted that the pH
threshold can be set at ranges other than provided herein
without departing from the preferred embodiments.

In an alternative embodiment of signal artifacts detection,
pressure and/or stress can be monitored using known tech-
niques for example by a strain gauge placed on the sensor
that detects stress/strain on the circuit board, sensor housing,
or other components. A variety of microelectromechanical
systems (MEMS) can be utilized to measure pressure and/or
stress within the sensor.

In another alternative embodiment of signal artifacts
detection, the microprocessor in the sensor (or receiver)
periodically evaluates the data stream for high amplitude
noise, which is defined by noisy data wherein the amplitude
of the noise is above a predetermined threshold. For
example, in the graph of FIGS. 7A and 7B, the system noise
sections such as 72a¢ and 726 have a substantially low
amplitude noise threshold; in contrast to system noise, signal
artifacts sections such as 74a and 745 have signal artifacts
(noise) with an amplitude that is much higher than that of
system noise. Therefore, a threshold can be set at or above
the amplitude of system noise, such that when noisy data is
detected above that amplitude, it can be considered “signal
artifacts” as defined herein.

In another alternative embodiment of signal artifacts
detection, a method hereinafter referred to as the “Cone of
Possibility Detection Method,” utilizes physiological infor-
mation along with glucose signal values in order define a
“cone” of physiologically feasible glucose signal values
within a human, such that signal artifacts are detected
whenever the glucose signal falls outside of the cone of
possibility. Particularly, physiological information depends
upon the physiological parameters obtained from continuous
studies in the literature as well as our own observations. A
first physiological parameter uses a maximal sustained rate
of change of glucose in humans (e.g., about 4 to 5 mg/dl/
min) and a maximum acceleration of that rate of change
(e.g., about 0.1 to 0.2 mg/dL/min®). A second physiological
parameter uses the knowledge that rate of change of glucose
is lowest at the minima, which is the areas of greatest risk
in patient treatment, and the maxima, which has the greatest
long-term effect on secondary complications associated with
diabetes. A third physiological parameter uses the fact that
the best solution for the shape of the curve at any point along
the curve over a certain time period (e.g., about 20-30
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minutes) is a straight line. Additional physiological param-
eters can be incorporated and are within the scope of this
embodiment.

In practice, the Cone of Possibility Detection Method
combines any one or more of the above-described physi-
ological parameters to form an algorithm that defines a cone
of possible glucose levels for glucose data captured over a
predetermined time period. In one exemplary implementa-
tion of the Cone of Possibility Detection Method, the system
(microprocessor in the sensor or receiver) calculates a
maximum physiological rate of change and determines if the
data falls within these physiological limits; if not, signal
artifacts are identified. It is noted that the maximum rate of
change can be narrowed (e.g., decreased) in some instances.
Therefore, additional physiological data could be used to
modify the limits imposed upon the Cone of Possibilities
Detection Method for sensor glucose values. For example,
the maximum per minute rate change can be lower when the
subject is sleeping or hasn’t eaten in eight hours; on the other
hand, the maximum per minute rate change can be higher
when the subject is exercising or has consumed high levels
of glucose, for example. In general, it has been observed that
rates of change are slowest near the maxima and minima of
the curve, and that rates of change are highest near the
midpoint between the maxima and minima. It should further
be noted that rate of change limits are derived from analysis
of a range of data significantly higher unsustained rates of
change can be observed.

In another alternative embodiment of signal artifacts
detection, examination of the spectral content (e.g., fre-
quency content) of the data stream can yield measures useful
in detecting signal artifacts. For example, data that has high
frequency, and in some cases can be characterized by a large
negative slope, are indicative of signal artifacts and can
cause sensor signal loss. Specific signal content can be
monitored using an orthogonal transform, for example a
Fourier transform, a Discrete Fourier Transform (DFT), or
any other method known in the art.

FIG. 11 is a graph of 110 a raw data stream from a glucose
sensor and a spectrogram 114 that shows the frequency
content of the raw data stream in one embodiment. Particu-
larly, the graph 110 illustrates the raw data stream 112 and
includes an x-axis that represents time in hours and a y-axis
that represents sensor data output in counts; the spectrogram
114 illustrates the frequency content 116 corresponding to
the raw data stream 112 and includes an x-axis that repre-
sents time in hours corresponding to the x-axis of the graph
110 and a y-axis that represents frequency content in cycles
per hour. The darkness of each point represents the ampli-
tude of that frequency at that time. Darker points relate to
higher amplitudes. Frequency content on the spectrogram
114 was obtained using a windowed Discrete Fourier trans-
form.

The raw data stream in the graph 110 has been adjusted by
a linear mapping similar to the calibration algorithm. In this
example, the bias (or intercept) has been adjusted but not the
proportion (or slope). The slope of the raw data stream
would typically be determined by some calibration, but
since the calibration has not occurred in this example, the
gray levels in the spectrogram 114 indicate relative values.
The lower values of the graph 110 are white. They are
colored as white below a specific value, highlighting only
the most intense areas of the graph.

By monitoring the frequency content 116, high frequency
cycles 118 can be observed. The high frequency cycles 118
correspond to signal artifacts 119 such as described herein.
Thus, signal artifacts can be detected on a data stream by
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monitoring frequency content and setting a threshold (e.g.,
30 cycles per hour). The set threshold can vary depending on
the signal source.

In another alternative embodiment of signal artifacts
detection, examination of the signal information content can
yield measures useful in detecting signal artifacts. Time
series analysis can be used to measure entropy, approximate
entropy, variance, and/or percent change of the information
content over consecutive windows (e.g., 30 and 60 minute
windows of data) of the raw data stream. In one exemplary
embodiment, the variance of the raw data signal is measured
over 15 minute and 45 minute windows, and signal artifacts
are detected when the variance of the data within the
15-minute window exceeds the variance of the data within
the 45-minute window.

One or a plurality of the above signal artifacts detection
models can be used alone or in combination to detect signal
artifacts such as described herein. Accordingly, the data
stream associated with the signal artifacts can be discarded,
replaced, or otherwise processed in order to reduce or
eliminate these signal artifacts and thereby improve the
value of the glucose measurements that can be provided to
a user.

Signal Artifacts Replacement

Signal Artifacts Replacement, such as described above,
can use systems and methods that reduce or replace these
signal artifacts that can be characterized by transience, high
frequency, high amplitude, and/or substantially non-linear
noise. Accordingly, a variety of filters, algorithms, and other
data processing are provided that address the detected signal
artifacts by replacing the data stream, or portion of the data
stream, with estimated glucose signal values. It is noted that
“signal estimation” as used herein, is a broad term, which
includes filtering, data smoothing, augmenting, projecting,
and/or other algorithmic methods that estimate glucose
signal values based on present and historical data.

It is noted that a glucose sensor can contain a micropro-
cessor or the like that processes periodically received raw
sensor data (e.g., every 30 seconds). Although a data point
can be available constantly, for example by use of an
electrical integration system in a chemo-electric sensor,
relatively frequent (e.g., every 30 seconds), or less frequent
data point (e.g., every 5 minutes), can be more than sufficient
for patient use. It is noted that accordingly Nyquist Theory,
a data point is required about every 10 minutes to accurately
describe physiological change in glucose in humans. This
represents the lowest useful frequency of sampling. How-
ever, it should be recognized that it is desirable to sample
more frequently than the Nyquist minimum, to provide for
sufficient data in the event that one or more data points are
lost, for example. Additionally, more frequently sampled
data (e.g., 30-second) can be used to smooth the less
frequent data (e.g., 5S-minute) that are transmitted. It is noted
that in this example, during the course of a 5-minute period,
10 determinations are made at 30-second intervals.

In some embodiments of Signal Artifacts Replacement,
signal estimation can be implemented in the sensor and
transmitted to a receiver for additional processing. In some
embodiments of Signal Artifacts Replacement, raw data can
be sent from the sensor to a receiver for signal estimation
and additional processing therein. In some embodiments of
Signal Artifacts Replacement, signal estimation is per-
formed initially in the sensor, with additional signal estima-
tion in the receiver.

In some embodiments of Signal Artifacts Replacement,
wherein the sensor is an implantable glucose sensor, signal
estimation can be performed in the sensor to ensure a
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continuous stream of data. In alternative embodiments, data
can be transmitted from the sensor to the receiver, and the
estimation performed at the receiver; It is noted however
that there can be a risk of transmit-loss in the radio trans-
mission from the sensor to the receiver when the transmis-
sion is wireless. For example, in embodiments wherein a
sensor is implemented in vivo, the raw sensor signal can be
more consistent within the sensor (in vivo) than the raw
signal transmitted to a source (e.g., receiver) outside the
body (e.g., if a patient were to take the receiver off to shower,
communication between the sensor and receiver can be lost
and data smoothing in the receiver would halt accordingly).
Consequently, It is noted that a multiple point data loss in the
filter can take for example, about 25 to about 40 minutes for
the data to recover to near where it would have been had
there been no data loss.

In some embodiments of Signal Artifacts Replacement,
signal estimation is initiated only after signal artifacts are
positively detected, and stopped once signal artifacts are
negligibly detected. In some alternative embodiments signal
estimation is initiated after signal artifacts are positively
detected and then stopped after a predetermined time period.
In some alternative embodiments, signal estimation can be
continuously or continually performed. In some alternative
embodiments, one or more forms of signal estimation can be
accomplished based on the severity of the signal artifacts,
such as will be described with reference the section entitled,
“Selective Application of Signal Artifacts Replacement.”

In some embodiments of Signal Artifacts Replacement,
the microprocessor performs a linear regression. In one such
implementation, the microprocessor performs a linear
regression analysis of the n (e.g., 10) most recent sampled
sensor values to smooth out the noise. A linear regression
averages over a number of points in the time course and thus
reduces the influence of wide excursions of any point from
the regression line. Linear regression defines a slope and
intercept, which is used to generate a “Projected Glucose
Value,” which can be used to replace sensor data. This
regression can be continually performed on the data stream
or continually performed only during the transient signal
artifacts. In some alternative embodiments, signal estima-
tion can include non-linear regression.

In another embodiment of Signal Artifacts Replacement,
the microprocessor performs a trimmed regression, which is
a linear regression of a trimmed mean (e.g., after rejecting
wide excursions of any point from the regression line). In
this embodiment, after the sensor records glucose measure-
ments at a predetermined sampling rate (e.g., every 30
seconds), the sensor calculates a trimmed mean (e.g.,
removes highest and lowest measurements from a data set
and then regresses the remaining measurements to estimate
the glucose value.

FIG. 12 is a graph that illustrates a raw data stream from
a glucose sensor and a trimmed regression that can be used
to replace some of or the entire data stream. The x-axis
represents time in minutes; the y-axis represents sensor data
output in counts. A raw data signal 120, which is illustrated
as a dotted line, shows a data stream wherein some system
noise can be detected, however signal artifacts 122 can be
particularly seen in a portion thereof (and can be detected by
methods such as described above). The trimmed regression
line 124, which is illustrated as a solid line, is the data stream
after signal estimation using a trimmed linear regression
algorithm, such as described above, and appears at least
somewhat “smoothed” on the graph. In this particular
example, the trimmed regression uses the most recent 60
points (30 minutes) and trims out the highest and lowest
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values, then uses the leftover 58 points to project the next
point. It is noted that the trimmed regression 124 provides a
good estimate throughout the majority data stream, however
is only somewhat effective in smoothing the data in during
signal artifacts 122. To provide an optimized estimate of the
glucose data values, the trimmed regression can be opti-
mized by changing the parameters of the algorithm, for
example by trimming more or less raw glucose data from the
top and/or bottom of the signal artifacts 122 prior to regres-
sion. Additionally It is noted that trimmed regression,
because of its inherent properties, can be particularly suited
for noise of a certain amplitude and/or characteristic. In one
embodiment, for example trimmed regression can be selec-
tively applied based on the severity of the signal artifacts,
which is described in more detail below with reference to
FIGS. 15 to 17.

In another embodiment of Signal Artifacts Replacement,
the microprocessor runs a non-recursive filter, such as a
finite impulse response (FIR) filter. A FIR filter is a digital
signal filter, in which every sample of output is the weighted
sum of past and current samples of input, using only some
finite number of past samples.

FIG. 13 a graph that illustrates a raw data stream from a
glucose sensor and an FIR-estimated signal that can be used
to replace some of or the entire data stream. The x-axis
represents time in minutes; the y-axis represents sensor data
output in counts. A raw data signal 130, which is illustrated
as a dotted line, shows a data stream wherein some system
noise can be detected, however signal artifacts 132 can be
particularly seen in a portion thereof (and can be detected by
methods such as described above). The FIR-estimated signal
134, which is illustrated as a solid line, is the data stream
after signal estimation using a FIR filter, such as described
above, and appears at least somewhat “smoothed” on the
graph. It is noted that the FIR-estimated signal provides a
good estimate throughout the majority of the data stream,
however like trimmed regression it is only somewhat effec-
tive in smoothing the data during signal artifacts 132. To
provide an optimized estimate of the glucose data values, the
FIR filter can be optimized by changing the parameters of
the algorithm, for example the tuning of the filter, particu-
larly the frequencies of the pass band and the stop band.
Additionally It is noted that the FIR filter, because of its
inherent properties, can be particularly suited for noise of a
certain amplitude and/or characteristic. In one embodiment,
for example the FIR filter can be selectively applied based
on the severity of the signal artifacts, which is described in
more detail below with reference to FIGS. 15 to 17. It is
noted that the FIR-estimated signal induces a time lag on the
data stream, which can be increased or decreased in order to
optimize the filtering or to minimize the time lag, for
example.

In another embodiment of Signal Artifacts Replacement,
the microprocessor runs a recursive filter, such as an infinite
impulse response (IIR) filter. An IIR filter is a type of digital
signal filter, in which every sample of output is the weighted
sum of past and current samples of input. In one exemplary
implementation of an IIR filter, the output is computed using
6 additions/subtractions and 7 multiplications as shown in
the following equation:

apxx(m)+ay xx(n— D +ayxx(n—2)+ az xx(n—3) —
breyn—1)—brxy(n—-2)—bsxy(n—-73)
b

yn) =
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This polynomial equation includes coefficients that are
dependent on sample rate and frequency behavior of the
filter. Frequency behavior passes low frequencies up to cycle
lengths of 40 minutes, and is based on a 30 second sample
rate. In alternative implementations, the sample rate and
cycle lengths can be more or less. See Lynn “Recursive
Digital Filters for Biological Signals” Med. & Biol. Engi-
neering, Vol. 9, pp. 37-43, which is incorporated herein by
reference in its entirety.

FIG. 14 is a graph that illustrates a raw data stream from
a glucose sensor and an [IR-estimated signal that can be used
to replace some of or the entire data stream. The x-axis
represents time in minutes; the y-axis represents sensor data
output in counts. A raw data signal 140, which is illustrated
as a dotted line, shows a data stream wherein some system
noise can be detected, however signal artifacts 142 can be
particularly seen in a portion thereof (and can be detected by
methods such as described above). The IR-estimated signal
144, which is illustrated as a solid line, represents the data
stream after signal estimation using an IIR filter, such as
described above, and appears at least somewhat “smoothed”
on the graph. It is noted that the [IR-estimated signal induces
a time lag on the data stream, however it appears to be a
particularly good estimate of glucose data values during
signal artifacts 142, as compared to the FIR filter (FIG. 13),
for example.

To optimize the estimation of the glucose data values, the
parameters of the IIR filter can be optimized, for example by
increasing or decreasing the cycle lengths (e.g., 10 minutes,
20 minute, 40 minutes, 60 minutes) that are used in the
algorithm. Although an increased cycle length can increase
the time lag induced by the IIR filter, an increased cycle
length can also better estimate glucose data values during
severe signal artifacts. In other words, It is noted that the IR
filter, because of its inherent properties, can be particularly
suited for noise of a certain amplitude and/or characteristic.
In one exemplary embodiment, the IR filter can be continu-
ally applied, however the parameters such as described
above can be selectively altered based on the severity of the
signal artifacts; in another exemplary embodiment, the IR
filter can be applied only after positive detection of signal
artifacts. Selective application of the IR filter based on the
severity of the signal artifacts is described in more detail
below with reference to FIGS. 15 to 17.

It is noted that a comparison of linear regression, an FIR
filter, and an IIR filter can be advantageous for optimizing
their usage in the preferred embodiments. That is, an under-
standing the design considerations for each algorithm can
lead to optimized selection and implementation of the algo-
rithm, as described in the section entitled, “Selective Appli-
cation of Signal Replacement Algorithms™ herein. During
system noise, as defined herein, all of the above algorithms
can be successfully implemented during system noise with
relative ease. During signal artifacts, however, computa-
tional efficiency is greater with an IIR-filter as compared
with linear regression and FIR-filter. Additionally, although
the time lag associated with an IR filter can be substantially
greater than that of the linear regression or FIR-filter, this
can be advantageous during severe signal artifacts in order
to assign greater weight toward the previous, less noisy data
in signal estimation.

In another embodiment of Signal Artifacts Replacement,
the microprocessor runs a maximum-average (max-average)
filtering algorithm. The max-average algorithm smoothes
data based on the discovery that the substantial majority of
signal artifacts observed after implantation of glucose sen-
sors in humans, for example, is not distributed evenly above
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and below the actual blood glucose levels. It has been
observed that many data sets are actually characterized by
extended periods in which the noise appears to trend down-
wardly from maximum values with occasional high spikes
such as described in more detail above with reference to
FIG. 7B, section 745, which is likely in response to limita-
tions in the system that do not allow he glucose to fully react
at the enzyme layer and/or proper reduction of H,O, at the
counter electrode, for example. To overcome these down-
ward trending signal artifacts, the max-average calculation
tracks with the highest sensor values, and discards the bulk
of the lower values. Additionally, the max-average method
is designed to reduce the contamination of the data with
unphysiologically high data from the high spikes.

The max-average calculation smoothes data at a sampling
interval (e.g., every 30 seconds) for transmission to the
receiver at a less frequent transmission interval (e.g., every
5 minutes) to minimize the effects of low non-physiological
data. First, the microprocessor finds and stores a maximum
sensor counts value in a first set of sampled data points (e.g.,
5 consecutive, accepted, thirty-second data points). A frame
shift time window finds a maximum sensor counts value for
each set of sampled data (e.g., each 5-point cycle length) and
stores each maximum value. The microprocessor then com-
putes a rolling average (e.g., 5-point average) of these
maxima for each sampling interval (e.g., every 30 seconds)
and stores these data. Periodically (e.g., every 107 interval),
the sensor outputs to the receiver the current maximum of
the rolling average (e.g., over the last 10 thirty-second
intervals as a smoothed value for that time period (e.g., 5
minutes)). In one example implementation, a 10-point win-
dow can be used, and at the 10” interval, the microprocessor
computes the average of the most recent 5 or 10 average
maxima as the smoothed value for a 5 minute time period.

In some embodiments of the max-average algorithm, an
acceptance filter can also be applied to new sensor data to
minimize effects of high non-physiological data. In the
acceptance filter, each sampled data point (e.g., every
30-seconds) is tested for acceptance into the maximum
average calculation. Each new point is compared against the
most representative estimate of the sensor curve at the
previous sampling interface (e.g., 30-second time point), or
at a projection to a current estimated value. To reject high
data, the current data point is compared to the most recent
value of the average maximum values over a time period
(e.g., 5 sampled data points over a 2.5 minute period). If the
ratio of current value to the comparison value is greater than
a certain threshold (e.g., about 1.02), then the current data
point is replaced with a previously accepted value (e.g.,
30-second value). If the ratio of current value to the com-
parison value is in at or within a certain range (e.g., about
1.02 to 0.90), then the current data point is accepted. If the
ratio of current value to the comparison value is less than a
certain threshold (e.g., about 0.90), then the current data
point is replaced with a previously accepted value. The
acceptance filter step and max-average calculation are con-
tinuously run throughout the data set (e.g., fixed 5-minute
windows) on a rolling window basis (e.g., every 30 sec-
onds).

In some implementations of the acceptance filter, the
comparison value for acceptance could also be the most
recent maximum of 5 accepted sensor points (more sensi-
tive) or the most recent average over 10 averages of 5
maximum values (least sensitive), for example. In some
exemplary implementations of the acceptance filter, the
projected value for the current time point can be based on
regression of the last 4 accepted 30-second values and/or the
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last 2 to 4 (5 to 15 min) of the 5-minute smoothed values,
for example. In some exemplary implementations of the
acceptance filter, the percentage comparisons of +2% and
-10% of counts value would be replaced by percentage
comparisons based on the most recent 24 hour range of
counts values; this method would provide improved sensor
specificity as compared to a method based on total counts.

In another embodiment of Signal Artifacts Replacement,
the microprocessor runs a “Cone of Possibility Replacement
Method.” It is noted that this method can be performed in the
sensor and/or in the receiver. The Cone of Possibility
Detection Method utilizes physiological information along
with glucose signal values in order define a “cone” of
physiologically feasible glucose signal values within a
human. Particularly, physiological information depends
upon the physiological parameters obtained from continuous
studies in the literature as well as our own observations. A
first physiological parameter uses a maximal sustained rate
of change of glucose in humans (e.g., about 4 to 5 mg/dl/
min) and a maximum sustained acceleration of that rate of
change (e.g., about 0.1 to 0.2 mg/min/min). A second
physiological parameter uses the knowledge that rate of
change of glucose is lowest at the maxima and minima,
which are the areas of greatest risk in patient treatment, such
as described with reference to Cone of Possibility Detection,
above. A third physiological parameter uses the fact that the
best solution for the shape of the curve at any point along the
curve over a certain time period (e.g., about 20-25 minutes)
is a straight line. It is noted that the maximum rate of change
can be narrowed in some instances. Therefore, additional
physiological data can be used to modify the limits imposed
upon the Cone of Possibility Replacement Method for
sensor glucose values. For example, the maximum per
minute rate change can be lower when the subject is lying
down or sleeping; on the other hand, the maximum per
minute rate change can be higher when the subject is
exercising, for example.

The Cone of Possibility Replacement Method utilizes
physiological information along with blood glucose data in
order to improve the estimation of blood glucose values
within a human in an embodiment of Signal Artifacts
Replacement. The Cone of Possibility Replacement Method
can be performed on raw data in the sensor, on raw data in
the receiver, or on smoothed data (e.g., data that has been
replaced/estimated in the sensor or receiver by one of the
methods described above) in the receiver.

In a first implementation of the Cone of Possibility
Replacement Method, a centerline of the cone can be
projected from a number of previous, optionally smoothed,
incremental data points (e.g., previous four, S-minute data
points). Each predicted cone centerline point (e.g., 5 minute
point) increases by the slope (S) (e.g., for the regression in
counts/minute) multiplied by the data point increment (e.g.,
5 minutes). Counts/mg/dL. is estimated from glucose and
sensor range calculation over the data set.

In this first implementation of the Cone of Possibility
Replacement Method, positive and negative cone limits are
simple linear functions. Periodically (e.g., every 5 minutes),
each sensor data point (optionally smoothed) is compared to
the cone limits projected from the last four points. If the
sensor value observed is within the cone limits, the sensor
value is retained and used to generate the cone for the next
data point increment (e.g., S-minute point). If the sensor
value observed falls outside the high or low cone limit, the
value is replaced by the cone limit value, and that value is
used to project the next data point increment (e.g., 5 minute
point, high point, or low point). For example, if the differ-
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ence between two adjacent S-minute points exceeds 20
mg/dL, then cone limits are capped at 20 mg/dL. increments
per 5 minutes, with the positive limit of the cone being
generated by the addition of 0.5%A*t* to mid cone value,
where A is 0.1 mg/dl./min/min and t is 5 minute increments
(A is converted to counts/min/min for the calculation), and
the negative limit of the cone being generated by the
addition of —0.5* A*t* to mid cone value. This implementa-
tion provides a high degree of accuracy and is minimally
sensitive to non-physiological rapid changes.

The following table illustrates one example implementa-
tion of the Cone of Possibility Replacement Method,
wherein the maximum sustained value observed for S is
about +/-4 mg/dl/min and the maximum value observed for
A is about +/-0.1 mg/dL/min>:

Mid line
Time (mg/dL) Positive Cone Limit Negative Cone Limit

0 100 100 100

5100 + 5*S 100 + 5*S + 12.5*A 100 + 5*S - 12.5A

10 100 + 10*S 100 + 10*S + 50*A 100 + 10*S - 50%A
15 100 + 15*S 100 + 15*S + 112.5*A 100 + 15*S - 112.5%A
20 100 +20*S 100 + 20*S + 200*A 100 + 20*S - 200*A
25 100 +25*S 100 + 25*S + 312.5*A 100 + 25%S - 312.5%A

It is noted that the cone widens for each 5-minute incre-
ment for which a sensor value fails to fall inside the cone up
to 30 minutes, such as can be seen in the table above. At 30
minutes, a cone has likely widened enough to capture an
observed sensor value, which is used, and the cone collapses
back to a 5-minute increment width. If no sensor values are
captured within 30 minutes, the cone generation routine
starts over using the next four observed points. In some
implementations special rules can be applied, for example in
a case where the change in counts in one S-minute interval
exceeds an estimated 30-mg/dl. amount. In this case, the
next acceptable point can be more than 20 to 30 minutes
later. It is noted that an implementation of this algorithm
includes utilizing the cone of possibility to predict glucose
levels and alert patients to present or upcoming dangerous
blood glucose levels.

In another alternative embodiment of cone widening, the
cone can widen in set multiples (e.g., 20 mg/dL) of equiva-
lent amounts for each additional time interval (e.g., 5
minutes), which rapidly widens the cone to accept data.

It is noted that the numerical parameters represent only
one example implementation of the Cone of Possibility
Replacement Method. The concepts can be applied to any
numerical parameters as desired for various glucose sensor
applications.

In another implementation of the Cone of Possibility
Replacement Method, sensor calibration data is optimized
using the Clarke Error Grid, the Consensus Grid, or an
alternative error assessment that assigns risk levels based on
the accuracy of matched data pairs. In an example using the
Clarke Error Grid, because the 10 regions of the Clarke
Error Grid are not all symmetric around the Y=X perfect
regression, fits to the grid can be improved by using a
multi-line regression to the data.

Accordingly the pivot point method for the counts vs.
glucose regression fit can be used to optimize sensor cali-
bration data to the Clarke Error Grid, Consensus Grid, or
other clinical acceptability standard. First, the glucose range
is divided according to meter values (e.g., at 200 mg/dL).
Two linear fitting lines are used, which cross at the pivot
point. The coordinates of the pivot point in counts and
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glucose value, plus the slope and intercept of the two lines
are variable parameters. Some of pivot point coordinates
(e.g., 4 out of 6) and slope or intercept of each line can be
reset with each iteration, while the chosen coordinates define
the remainder. The data are then re-plotted on the Clarke
Error Grid, and changes in point placement and percentages
in each region of the grid are evaluated. To optimize the fit
of a data set to a Clark Error Grid, the regression of counts
vs. reference glucose can be adjusted such that the maximum
number of points are in the A+B zones without reducing the
A+B percentage, and the number of points are optimized
such that the highest percentage are in the A zone and lowest
percentage are in the D, E and C zones. In general, the points
should be distributed as evenly as possible around the Y=X
line. In some embodiments, three distinct lines optimized for
clinical acceptability can represent the regression line. In
some embodiments, an additional useful criterion can be
used to compute the root mean squared percentage bias for
the data set. Better fits are characterized by reduction in the
total root mean squared percentage bias. In an alternative
implementation of the pivot point methods, a predetermined
pivot (e.g., 10 degree) of the regression line can be applied
when the estimated blood is above or below a set threshold
(e.g., 150 mg/dl), wherein the pivot and threshold are
determined from a retrospective analysis of the performance
of a conversion function and its performance at a range of
glucose concentrations.

In another embodiment of Signal Artifacts Replacement,
reference changes in electrode potential can be used to
estimate glucose sensor data during positive detection of
signal artifacts from an electrochemical glucose sensor, the
method hereinafter referred to as reference drift replace-
ment. In this embodiment, the electrochemical glucose sen-
sor comprises working, counter, and reference electrodes,
such as described with reference to FIGS. 1, 2 and 10 above.
This method exploits the function of the reference electrode
as it drifts to compensate for counter electrode limitations
during oxygen deficits, pH changes, and/or temperature
changes such as described in more detail above with refer-
ence to FIGS. 10A, 10B, and 10C.

Such as described with in more detail with reference to
FIG. 10A a potentiostat is generally designed so that a
regulated potential difference between the reference elec-
trode 102 and working electrode 100 is maintained as a
constant. The potentiostat allows the counter electrode volt-
age to float within a certain voltage range (e.g., from
between close to the +1.2V observed for the working
electrode to as low as battery ground or 0.0V). The counter
electrode voltage measurement will reside within this volt-
age range dependent on the magnitude and sign of current
being measured at the working electrode and the electroac-
tive species type and concentration available in the electro-
lyte adjacent to the counter electrode 104. This species will
be electrochemically recruited (e.g., reduced/accepting elec-
trons) to equal the current of opposite sign (e.g., oxidized/
donating electrons) occurring at the working electrode 100.
It has been discovered that the reduction of dissolved
oxygen or hydrogen peroxide from oxygen converted in the
enzyme layer are the primary species reacting at the counter
electrode to provide this electronic current balance in this
embodiment. If there are inadequate reducible species (e.g.,
oxygen) available for the counter electrode, or if other
non-glucose reaction rate limiting phenomena occur (e.g.,
temperature or pH), the counter electrode can be driven in its
electrochemical search for electrons all the way to ground or
0.0V. However, regardless of the voltage in the counter
electrode, the working and counter electrode currents must
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still maintain substantially equivalent currents. Therefore,
the reference electrode 102 will drift upward creating new
oxidizing and reducing potentials that maintain equal cur-
rents at the working and counter electrodes.

Because of the function of the reference electrode 102,
including the drift that occurs during periods of signal
artifacts (e.g., ischemia), the reference electrode can be
monitored to determine the severity of the signal artifacts on
the data stream. Particularly, a substantially direct relation-
ship between the reference electrode drift and signal artifacts
has been discovered. Using the information contained within
the CV curve (FIGS. 10B and/or 10C), the measured glucose
signal (Iszysz) can be automatically scaled accordingly to
replace these undesired transient effects on the data stream.
It is noted that the circuit described with reference to FIG.
10A can be used to determine the CV curve on a regularly
scheduled basis or as needed. To this end, the desired
reference voltage and applied potential are made variable,
and the reference voltage can be changed at a defined rate
while measuring the signal strength from the working elec-
trode, which allows for generation of a CV curve while a
sensor is in vivo.

In alternative implementations of the reference drift
replacement method, a variety of algorithms can therefore be
implemented that replaces the signal artifacts based on the
changes measured in the reference electrode. Linear algo-
rithms, and the like, are suitable for interpreting the direct
relationship between reference electrode drift and the non-
glucose rate limiting signal noise such that appropriate
conversion to signal noise compensation can be derived.

In other embodiments of Signal Artifacts Replacement,
prediction algorithms, also referred to as projection algo-
rithms, can be used to replace glucose data signals for data
which does not exist because 1) it has been discarded, 2) it
is missing due to signal transmission errors or the like, or 3)
it represents a time period (e.g., future) for which a data
stream has not yet been obtained based on historic and/or
present data. Prediction/projection algorithms include any of
the above described Signal Artifacts Replacement algo-
rithms, and differ only in the fact that they are implemented
to replace time points/periods during which no data is
available (e.g., for the above-described reasons), rather than
including that existing data, within the algorithmic compu-
tation.

In some embodiments, signal replacement/estimation
algorithms are used to predict where the glucose signal
should be, and if the actual data stream varies beyond a
certain threshold of that projected value, then signal artifacts
are detected. In alternative embodiments, other data pro-
cessing can be applied alone, or in combination with the
above-described methods, to replace data signals during
system noise and/or signal artifacts.

Selective Application of Signal Replacement Algorithms

FIG. 15 is a flow chart that illustrates a process of
selectively applying signal estimation in embodiments.

At block 152, a sensor data receiving module, also
referred to as the sensor data module, receives sensor data
(e.g., a data stream), including one or more time-spaced
sensor data points, such as described in more detail with
reference to block 82 in FIG. 8.

At block 154, a signal artifacts detection module, also
referred to as the signal artifacts detector 154, is pro-
grammed to detect transient non-glucose related signal arti-
facts in the data stream that have a higher amplitude than
system noise, such as described in more detail with reference
to block 84 in FIG. 8. However, the signal artifacts detector
of this embodiment can additionally detect a severity of
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signal artifacts. In some embodiments, the signal artifacts
detector has one or more predetermined thresholds for the
severity of the signal artifacts (e.g., low, medium, and high).
In some embodiments, the signal artifacts detector numeri-
cally represents the severity of signal artifacts based on a
calculation for example, which representation can be used to
apply to the signal estimation algorithm factors, such as
described in more detail with reference to block 156.

In one exemplary embodiment, the signal artifacts detec-
tion module evaluates the amplitude and/or frequency of the
transient non-glucose related signal artifacts, which ampli-
tude and/or frequency can be used to define the severity in
terms of a threshold (e.g., high or low) or a numeric
representation (e.g., a value from 1 to 10). In another
exemplary embodiment, the signal artifacts detection mod-
ule evaluates a duration of the transient non-glucose related
signal artifacts, such that as the duration increases, a severity
can be defined in terms of a threshold (e.g., short or long) or
a numeric representation (e.g., 10, 20, 30, 40, 50, or 60
minutes). In another exemplary embodiment, the signal
artifacts detection module evaluates the frequency content
from a Fourier Transform and defines severity in terms of a
threshold (e.g., above or below 30 cycles per hour) or a
numeric representation (e.g., 50 cycles per hour). All of the
signal artifacts detection methods described herein can be
implemented to include determining a severity of the signal
artifacts, threshold, and/or numerical representations.

At block 156, the signal artifacts replacement module,
also referred to as the signal estimation module, selectively
applies one of a plurality of signal estimation algorithm
factors in response to the severity of said signal artifacts.

In one embodiment, signal artifacts replacement is nor-
mally turned off, except during detected signal artifacts. In
another embodiment, a first signal estimation algorithm
(e.g., linear regression, FIR filter etc.) is turned on all the
time, and a second signal estimation algorithm optimized for
signal artifacts (e.g., IR filter, Cone of Possibility Replace-
ment Method, etc.) is turned on only during positive detec-
tion of signal artifacts.

In another embodiment, the signal replacement module
comprises programming to selectively switch on and off a
plurality of distinct signal estimation algorithms based on
the severity of the detected signal artifacts. For example, the
severity of the signal artifacts can be defined as high and
low. In such an example, a first filter (e.g., trimmed regres-
sion, linear regression, FIR, Reference Electrode Method,
etc.) can be applied during low signal artifacts and a second
filter (e.g., IIR, Cone of Possibility Method, etc.) can be
applied during high signal artifacts. It is noted that all of the
above signal replacement algorithms can be selectively
applied in this manner based on the severity of the detected
signal artifacts.

FIG. 16 is a graph that illustrates a embodiment wherein
the signal replacement module comprises programming to
selectively switch on and off a signal artifacts replacement
algorithm responsive to detection of signal artifacts. The
x-axis represents time in minutes; the first y-axis 160
represents sensor data output in counts. A raw data signal
161, which is illustrated as a dotted line, shows a data stream
wherein some system noise can be detected; however signal
artifacts 162 can be particularly seen in a portion thereof.
The second y-axis 164 represents counter-electrode voltage
in counts; counter electrode voltage data 165 is illustrated as
a solid line. It is noted that a counter voltage drop to
approximately zero in this example, which is one of numer-
ous methods provided for detecting signal artifacts, detects
signal artifacts 162. Accordingly, when the system detects
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the signal artifacts 162, an [IR-filter is selectively switched
on in order to replace the signal artifact with an IIR-
estimated glucose signal 166, which is illustrated as a heavy
solid line. The IIR filter is switched off upon detection of
negligible signal artifacts (e.g., counter electrode voltage
increasing from about zero in this embodiment).

FIG. 17 is a graph that illustrates a embodiment wherein
the signal artifacts replacement module comprises program-
ming to selectively apply different signal artifacts replace-
ment algorithms responsive to detection of signal artifacts.
The x-axis represents time in minutes; the first y-axis 170
represents sensor data output in counts. A raw data signal
171, which is illustrated as a dotted line, shows a data stream
wherein some system noise can be detected; however signal
artifacts 172 can be particularly seen in a portion thereof.
The second y-axis 174 represents counter-electrode voltage
in counts; counter electrode voltage data 175 is illustrated as
a solid line. It is noted that a counter voltage drop to
approximately zero in this example, which is one of numer-
ous methods provided for detecting signal artifacts, detects
signal artifacts 172.

In this embodiment, an FIR filter is applied to the data
stream during detection of negligible or no signal artifacts
(e.g., during no noise to system noise in the data stream).
Accordingly, normal signal noise (e.g., system noise) can be
filtered to replace the data stream with an FIR-filtered data
signal 176, which is illustrated by a slightly heavy solid line.
However, upon positive detection of signal artifacts (e.g.,
detected by approximately zero counter electrode voltage in
this embodiment), the FIR filter is switched off and an
IIR-filter is switched on in order to replace the signal
artifacts with an IIR-filtered glucose signal 178, which is
illustrated as a heavy solid line. The IIR filter is subsequently
switched off and the FIR filter is switched back on upon
detection of negligible signal artifacts (e.g., counter elec-
trode voltage increasing from about zero in this embodi-
ment).

In another embodiment, the signal replacement module
comprises programming to selectively apply different
parameters to a single signal artifacts replacement algorithm
(e.g., IIR, Cone of Possibility Replacement Method, etc.).
As an example, the parameters of an algorithm can be
switched according to signal artifacts detection; in such an
example, an [IR filter with a 30-minute cycle length can be
used during times of no noise or system noise and a
60-minute cycle length can be used during signal artifacts.
As another example, the severity of the signal artifacts can
be defined as short and long; in such an example, an IIR filter
with a 30-minute cycle length can be used during the short
signal artifacts and a 60-minute cycle length can be used
during long signal artifacts. As yet another example, the
severity of the signal artifacts can be defined by a numerical
representation; in such an example, the numerical represen-
tation can be used to calculate the parameters of the signal
replacement algorithm (e.g., IIR, Cone of Possibility
Replacement Method, and Reference Drift Method).

The above description provides several methods and
materials of the invention. This invention is susceptible to
modifications in the methods and materials, as well as
alterations in the fabrication methods and equipment. Such
modifications will become apparent to those skilled in the art
from a consideration of this application or practice of the
invention provided herein. Consequently, it is not intended
that this invention be limited to the specific embodiments
provided herein, but that it cover all modifications and
alternatives coming within the true scope and spirit of the
invention as embodied in the attached claims. All patents,
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applications, and other references cited herein are hereby
incorporated by reference in their entirety.

What is claimed is:

1. A method for processing data from a continuous
glucose sensor, the method comprising:

providing a glucose sensor operably connected to elec-

tronic circuitry;

monitoring, using the electronic circuitry, a signal gener-

ated by a working electrode of the glucose sensor, the
signal comprising a glucose sensor data point;
further monitoring, using the electronic circuitry, an out-
put of a counter electrode of the glucose sensor;

detecting, using the electronic circuitry, a signal artifact
associated with the glucose signal based on the moni-
toring of the output of the counter electrode, wherein
the detecting includes determining a first state of sever-
ity from a plurality of state of severities of the signal
artifact;
selecting a first signal estimation algorithm from a group
of one or more signal estimation algorithms based on
the determination of the first state of severity of the
signal artifact, wherein the first signal estimation algo-
rithm is different from the other plurality of signal
estimation algorithms and wherein each of the plurality
of signal estimation algorithms use historical and/or
present signal data to estimate unknown signal data;

applying using the electronic circuitry, the selected first
signal estimation algorithm;

generating an estimated sensor data point based on the

application of the selected first signal estimation algo-
rithm; and

replacing, using the electronic circuitry, the sensor data

point with the estimated sensor data point.

2. The method of claim 1, wherein the signal comprises a
raw signal.

3. The method of claim 1, wherein the signal comprises a
calibrated signal of glucose concentration values.

4. The method of claim 1, wherein the signal artifact is a
transient non-glucose related signal artifact.

5. The method of claim 1, further comprising displaying
or transmitting the estimated data point.

6. The method of claim 1, wherein the detecting com-
prises identifying a drop in the output of the counter elec-
trode to about zero and associating the output drop with the
glucose sensor data point.

7. The method of claim 1, wherein the detecting com-
prises comparing the signal with the output of the counter
electrode.

8. The method of claim 1, wherein the electronic circuitry
is housed within an electronics unit configured to be physi-
cally coupled to the glucose sensor.

9. The method of claim 1, wherein the monitored signal
is associated with a biological sample.

10. The method of claim 1, wherein the signal artifact is
associated with a change in a pH value of a fluid that is
detected by the glucose sensor.

11. The method of claim 1, wherein the signal artifact is
associated with a change in available surface area of at least
one of the electrodes.

12. The method of claim 1, further comprising measuring
a counter electrode voltage, wherein the counter electrode
voltage is directly related to current from the working
electrode.

13. The method of claim 12, wherein the measured
counter electrode voltage is in units of counts.
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14. The method of claim 12, wherein the counter electrode
has a greater electrochemically reactive surface area than the
working electrode.
15. The method of claim 1, wherein the working electrode
is an anode and the counter electrode is a cathode of an
electrochemical cell.
16. A system for processing data from a glucose sensor,
the system comprising:
a glucose sensor comprising a working electrode config-
ured to generate a signal and a counter electrode
configured to generate a counter electrode output; and
an artifact replacement module configured to:
monitor the counter electrode output;
detect a signal artifact associated with a portion of the
signal based on the monitoring of the counter elec-
trode output, wherein the detection includes deter-
mination of a first state of severity from a plurality of
state of severities of the signal artifact;

select a first signal estimation algorithm from a group
of'one or more signal estimation algorithms based on
the determination of the first state of severity of the
signal artifact, wherein the first signal estimation
algorithm is different from the other plurality of
signal estimation algorithms and wherein each of the
plurality of signal estimation algorithms use histori-
cal and/or present signal data to estimate unknown
signal data;

apply the selected first signal estimation algorithm;

an estimated data stream portion based on the applica-
tion of the selected first signal estimation algorithm;
and

replace the portion of the signal with the estimated data
stream portion.

17. The system of claim 16, wherein the signal comprises
a raw signal.

18. The system of claim 16, wherein the signal comprises
a calibrated signal of glucose concentration values.

19. The system of claim 16, wherein the signal artifact is
a transient non-glucose related signal artifact.

20. The system of claim 16, further comprising an output
module configured to display or transmit the information
representative of the estimated data stream portion.

21. The system of claim 16, wherein the artifact replace-
ment module is configured to detect by identifying a drop in
the counter electrode output to about zero and associating
the output drop with the portion of the signal.

22. The system of claim 16, wherein the artifact replace-
ment module is configured to detect by comparing the signal
with the counter electrode output.

23. The system of claim 16, wherein the monitored output
is associated with a biological sample.

24. The system of claim 16, wherein the signal artifact is
associated with a change in a pH value of a fluid that is
detected by the glucose sensor.

25. The system of claim 16, wherein the signal artifact is
associated with a change in available surface area of at least
one of the electrodes.

26. The system of claim 16, further configured to measure
a counter electrode voltage, wherein the counter electrode
voltage is directly related to current from the working
electrode.

27. The system of claim 26, wherein the measured counter
electrode voltage is in units of counts.

28. The system of claim 26, wherein the counter electrode
has a greater electrochemically reactive surface area than the
working electrode.
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29. The system of claim 16, wherein the working elec-
trode is an anode and the counter electrode is a cathode of
an electrochemical cell.
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